Сущность газокислородной резки. В чем сущность кислородной резки стали, какой инструмент при этом применяют? Технологические основы сварки плавлением и давлением

Мотивация 08.03.2020
Мотивация

На сегодняшний день газовая резка является наиболее популярным методом, благодаря отсутствию строгих требований к месту проведения работы и простоте выполнения операций. В этой статье вы узнаете об особенностях технологии, достоинствах и недостатках этого способа, принципе работы оборудования и его видах.

Газовая резка металла - технология, которая на сегодняшний день используется широко, поскольку предполагает простоту выполнения операции, не требует дополнительных источников энергии и сложного оборудования. Именно эти методом пользуются специалисты в ремонтных, строительных и сельскохозяйственных работах. Практически все устройства, предназначенные для резки металла газом, мобильны, их легко транспортировать и использовать в другом месте.

Сущность процесса кислородной резки заключается в следующем. Нагреватель разогревает металл в среднем до температуры в 1100 градусов С. Затем в рабочую зону подается струя кислорода. Поток, соприкасаясь с нагретым металлом, воспламеняется. Горящая струя легко разрезает металлический лист, при условии постоянной и стабильной подачи газа.

У металла температура горения должна быть меньше, нежели температура плавления. В противном случае расплавленные, но не сгоревшие массы сложно удалить из рабочей зоны.

Таким образом, операция резки выполняется за счет сгорания материала в струе газа. Основным модулем инструмента газовой резки является резак. Он обеспечивает точную дозировку смешивание газов или паров жидкого топлива с кислородными массами в газовоздушную смесь. Также резак обеспечивает воспламенение получаемой смеси, и отдельную подачу кислорода к рабочему месту.

Резка газом относится к термическим способам обработки металла. Ее преимущества в том, что можно работать с материалом любой толщины, причем с высокой производительностью. Объемы ежедневной выработки сварщика может измеряться тоннами. Специалисты отмечают достоинства данной технологии в том, что полностью автономна и не зависит от наличия/отсутствия источников питания. Поскольку сварщик нередко должен вести работы в полевых условиях или у него нет возможности подключиться к источнику питания на конкретном объекте.

Ручная газокислородная резка металла доступна для работы с широким спектром материалов, за исключением латуни, нержавеющей стали, меди и алюминия.

Виды резки металла газом

Газорезка различных металлов классифицируется на несколько методов, в зависимости от используемых газов и некоторых других особенностей. Каждый из способов оптимален для выполнения тех или иных задач. Например, если есть возможность подключения к сети, то можно воспользоваться кислородно электрической дуговой резкой, или при работе с низкоуглеродистыми сталями лучше использовать газовоздушную смесь с пропаном. Наиболее востребованы на практике следующие методы:

  • Резка пропаном. Резка металла пропаном и кислородом один из наиболее популярных способов работы, но она имеет некоторые ограничения. Операция выполнима для титановых сплавов, низкоуглеродистых и низколегированных сталей. Если содержание углерода или легирующего компонента в материале превышает 1%, необходимо искать другие способы кислородной эффективной резки металла. Этот метод предусматривает использование и других газов: метан, ацетилен, пропан и некоторые другие.
  • Воздушно-дуговая резка. Кислородно электрическая дуговая резка является весьма эффективным методом. Металл расплавляется с помощью электрической дуги, а удаление остатков выполняет воздушная струя. Кислородно электрическая дуговая резка предполагает подачу газа непосредственно вдоль электрода. Недостатком данного способа являются неглубокие резы. Зато их ширина при выполнении работы кислородно электрической дуговой сварки может быть любая.
  • Кислородно-флюсовая резка. Особенностью кислородно флюсовой металлической резки является подача в рабочую зону дополнительного компонента. Это флюс, имеющий порошкообразную форму. Этот компонент обеспечивает большую податливость материала во время проведения кислородно флюсовой металлической резки. Метод используется для разрезания материалов, образующих твердоплавкие окислы. Использование метода кислородно флюсовой металлической резки позволяет создать дополнительный тепловой эффект. Так режущая струя выполняет операцию эффективно. Кислородно флюсовая металлическая резка применима для чугуна, легированных сталей, алюминия, меди и медных сплавов, зашлакованных металлов и железобетона.
  • Копьевая резка. Кислородно копьевая металлическая резка используется для разделки габаритных массивов стали, технологических производственных отходов и аварийных скрапов. Ее особенность в том, что скорость выполнения операции значительно увеличивается. в этом случае заключается в использовании высокоэнергетичной струи, что снижает расход стальных копьев. Высокая скорость обеспечивается за счет полного и более быстрого сгорания металла.

Расход газа при резке металла

Расход газа к объемам резки зависит в первую очередь от выбранного метода проведения операции. Например, воздушно дуговая эффективная резка металла предполагает большее использование газа, нежели кислородно флюсовая металлическая резка. Также расход зависит от таких параметров:

  • опытность сварщика, новичок затратит больший объем на метр, нежели мастер;
  • целостность и технологические параметры используемого оборудования;
  • марка металла, с которым предстоит работа, и его толщина;
  • ширина и глубина выполняемого реза.

Ниже представлена таблица, если для резки металла используется пропан:

Преимущества и недостатки технологии

Резка металла кислородом характеризуется следующими преимуществами:

  • возможность разрезания листов и изделий значительной толщины;
  • рез можно выполнять любой степени сложности;
  • возможность поверхностной обработки материала;
  • оптимальное соотношение стоимость работы и ее качества;
  • достаточно быстрый способ и универсальный.

Среди недостатков следует отметить:

если у специалиста небольшой опыт работы, ему не следует браться за точные операции, поскольку для выполнения необходимы навыки и знания;

  • метод не безопасен, поскольку возможен взрыв газовоздушной смеси;
  • термическому воздействию подвергается значительный участок;
  • низкая точность резания.

Деформация материала при резке газом

Поскольку резка металла газом предполагает термическое воздействие на материал, деформация является естественным последствием операции. Неравномерный нагрев и охлаждение могут измерить форму заготовки. Но существуют несколько способов устранения этого дефекта:

  • использование отпуска или обжига;
  • правка листовой стали на вальцах, после этого материал становится более стабильным;
  • чтобы избежать коробления, можно закрепить изделие перед операцией;
  • выполнять операцию на максимально допустимой скорости и другие.

Обратный удар при резке газом

При работе с газовым резаком существует возможность обратного удара. В этом случае газовый поток начинает гореть в обратном направлении, причем скорость процесса выше, нежели скорость истечения газа. Это эффект способен вывести из строя оборудование, взрыв баллонов или редуктора. Также существуют риски нанесения значительного ущерба здоровью сварщика и других людей, находящихся поблизости. Эффективным решением данных опасностей будет установка клапана.

Еще некоторые особенности вы можете посмотреть на видео:


К атегория:

Технология кислородной резки

Основные условия резки металлов окислением

Не все металлы и сплавы поддаются резке окислением. Окислительная резка требует выполнения следующих условий:

1. Температура воспламенения металла (температура начала горения) должна быть ниже температуры его плавления. В этом случае металл горит в твердом состоянии; поверхность реза получается гладкой, верхние края кромки реза не подплавляются, продукты горения в виде шлака легко удаляются из полости реза кислородной струей и форма реза остается постоянной.

Этому условию отвечает железо и углеродистые стали. Техническое железо горит в кислороде при температуре 1050-1360 °С в зависимости от его состояния (прокат, порошок и др.), в то время как температура плавления железа равна 1539 °С.

Не поддаются резке окислением алюминий и его сплавы. Температура воспламенения и плавления алюминия соответственно равна 900 и 660 °С. Следовательно, алюминий может гореть только в жидком состоянии, поэтому получить постоянную форму реза невозможно.

2. Температура плавления образующихся при резке окислов и шлаков должна быть ниже температуры плавления металла. В этом случае они становятся жидкотекучими и беспрепятственно удаляются из области реза кислородной струей.

Окислы в виде FeO и Fe304, образующиеся при окислении железа в процессе резки, имеют температуру плавления 1350 и 1400 °С, т. е. ниже температуры плавления железа. Поэтому низкоуглеродистые стали поддаются резке окислением. Стали, содержащие более 0,65% углерода, имеют температуру плавления ниже температуры плавления окислов железа, и резка их окислением в обычных условиях затруднительна.

Некоторые металлы образуют окислы с высокими температурами плавления, например окислы алюминия - 2050 °С, хрома - около 2000 °С, никеля - 1985 °С, меди - 1230 °С.

Эти окислы при резке хромистых и хромоникелевых сталей, меди и ее сплавов, чугунов и других по сравнению с разрезаемым металлом являются тугоплавкими. Они при обычной окислительной резке не могут быть удалены из области реза, так как закрывают место окисления подогретого до температуры воспламенения металла от струи кислорода, и резка становится невозможной.

3. Металлы должны обладать небольшой теплопроводностью, чтобы не было сильного теплоотвода от места резки, иначе процесс резки прервется.

Медь, алюминий и их сплавы обладают высокой теплопроводностью по сравнению с железом и сталью; практически не удается сконцентрировать нагрев этих металлов до температуры воспламенения подогревающим пламенем по всей толщине листа. Поэтому указанные металлы не поддаются обычной кислородной резке.


1. СУЩНОСТЬ ПРОЦЕССА КИСЛОРОДНОЙ РЕЗКИ

Основой процесса кислородной резки стали является свойство железа интенсивно сгорать в струе технически чистого кислорода, будучи нагретым до температуры порядка 1300—1400° С, близкой к температуре плавления стали.

Металл при резке нагревают газокислородным пламенем. В качестве горючих применяются ацетилен, пропан-бутан, пиролизный, природный, коксовый и городской газы, пары керосина.

Металл нагревают на узком участке в начале линии разреза, а затем на нагретое место направляется струя режущего кислорода и резак начинают перемещать по намеченной линии резки. Металл сгорает по всей толщине листа, образуя в нем узкую щель (рез). Интенсивное окисление (горение) железа происходит только в слоях, пограничных с поверхностью режущей струи кислорода, который проникает (диффундирует) в металл на очень малую глубину.

Для сгорания 1 кг железа теоретически требуется от 0,29 до 0,38 м 3 кислорода, в зависимости от того, какой окисел получается при горении — FeO или Fе з 0 4 . Практический расход кислорода может сильно отличаться от теоретического, так как в шлаках присутствуют оба окисла в различных соотношениях, часть металла удаляется из разреза в расплавленном состоянии, часть кислорода расходуется на выдувание жидкого металла и шлаков, а также теряется в окружающую среду. Для резки применяют технический кислород чистотой 98,8—99,7%. С понижением чистоты кислорода на 1 % его расход на 1 м длины резки возрастает на 25—35%, а время резки — на 10—15%. Это особенно заметно при резке стали больших толщин. Применять для резки кислород чистотой ниже 98% нецелесообразно, так как поверхность реза получается недостаточно чистой, с глубокими рисками и трудноотделяемым шлаком.

Существует также способ т.н. импульсной кислородной резки. Данный способ разработан ВНИИАвтогенмаш и состоит в том, что после начального подогрева по всей длине линии реза на нее пускается режущий кислород. Процесс резки протекает всего несколько десятков секунд. Так, например, труба диаметром 219 мм, толщиной стенки 15 мм прорезается за 77 сек. Для резки применяют секционированные резаки с внутрисопловым смешением газов (см. рис. 90, и).

2. ОСНОВНЫЕ УСЛОВИЯ РЕЗКИ. ВЛИЯНИЕ СОСТАВА СТАЛИ НА РЕЗКУ

Основные условия резки. Для резки металла кислородом необходимы следующие условия:

а) температура горения металла в кислороде должна быть ниже температуры плавления, иначе металл будет плавиться и переходить в жидкое состояние до того, как начнется его горение в кислороде;

б) образующиеся окислы металла должны плавиться при температуре более низкой, чем температура горения металла, и не быть слишком вязкими; если металл не удовлетворяет этому требованию, то кислородная резка его без применения специальных флюсов невозможна, так как образующиеся окислы не смогут выдуваться из места разреза;

в) количество тепла, выделяющееся при сгорании металла в кислороде, должно быть достаточно большим, чтобы обеспечить поддержание процесса резки. При резке стали около 70% тепла, используемого для подогревания, выделяется при сгорании металла в кислороде и только 30% подводится от подогревающего пламени;

г) теплопроводность металла не должна быть слишком высокой, иначе, вследствие интенсивного теплоотвода, процесс резки может прерваться.

Влияние состава стали на резку. Перечисленным выше условиям наиболее полно отвечают чистое железо и стали с низким содержанием углерода. Чистое железо имеет температуру воспламенения в кислороде 1050° С, а температуру плавления 1528°С. При содержании в стали 0,7% углерода температура ее воспламенения в кислороде повышается до 1300° С, что равно температуре начала плавления стали этого состава. По данным А. Н. Шашкова избирательное окисление железа в кислороде при резке стали начинается при температуре около 1130°С, а при 1300°С и выше начинается интенсивное выгорание углерода.

На температуру загорания, кроме состава металла, оказывает влияние также состояние поверхности металла, величина его кусков, давление и скорость потока кислорода. Шероховатая поверхность облегчает загорание металла в кислороде. Порошок железа может воспламеняться в чистом кислороде при температуре 315°С, т. е. значительно более низкой, чем прокатанный металл. Металл на поверхности крупного куска стали загорается при температуре 1200—1300°С. При давлении 25 кгс/см 2 и скорости потока кислорода 180 м/сек температура загорания углеродистой стали в кислороде снижается до 700—750° С.


К атегория:

Резание металла

Сущность процесса резки металла

Резкой, или разрезанием, называют отделение частей (заготовок) от сортового или листового металла. Резка выполняется как со снятием стружки, так и без ее снятия. Способы разрезания со снятием стружки: ручной ножовкой, на ножовочных, круглопильных, то-карно-отрезных станках, а также газовой, дуговой резкой и другими способами.

Без снятия стружки материалы разрезают ручными рычажными и механическими ножницами, кусачками, труборезами, пресс-ножницами, штампами. К резке относится также и надрезание металла.

Рис. 1. Схема развальцовывания: 1 - конец трубы, 2 - фланец, 3,4 - ролики, 5 - канавки, 6 - труба до вальцевания, 7 - труба после вальцевания

Рис. 2. Ножницы ручные для резки металла: а - с прямыми лезвиями, б - прямые правые, в - с криволинейными лезвиями

Сущность процесса резки ножницами заключается в отделении частей металла под давлением пары режущих ножей. Разрезаемый лист помещают между верхним и нижним ножами.

Верхний нож, опускаясь, давит на металл и разрезает его.

Большое давление, испытываемое лезвиями при резании, требует большого угла заострения р. Чем тверже разрезаемый металл, тем больше угол заострения лезвия; для мягких металлов (медь и др.) он равен 65°, для металлов средней твердости - 70 - 75° и для твердых - 80 - 85°. С целью уменьшения трения лезвий ножей о разрезаемый металл лезвиям придается небольшой задний угол а (1,5-3°).

Газовая резка металлов основана на способности железа (открытой в 1776 г. Лавуазье), нагретого до определенной температуры, вступать в реакцию с кислородом. Началом практического освоения этого открытия послужило полученное в 1895 г. французским ученым Ле Шателье высокотемпературное пламя при горении смеси ацетилена с кислородом.

Газовая резка предназначена для разделительной и поверхностной обработки металлов. При разделительной обработке, когда режущая струя кислорода напра:влана приблизительно перпендикулярно к.разрезаемой поверхности, металл прорезается «а всю толщину до отделения одной части от другой. Разделительная газовая резка получила наибольшее распространение в промышленности и позволяет успешно резать стали толщиной от 3 до 2000 мм.

Поверхностная обработка представляет собой процесс, при котором снимается толпко поверхностная часть металла. Резка происходит посредством |большого наклона резака к поверхности металла, при этом струя режущего кислорода выжигает на его поверхности канавку овального сечения.

Наибольшее применение поверхностная резка получила в металлургии для удаления дефектов с поверхности литья и проката черных металлов. В некоторых случаях поверхностная резка с успехом может заменять черновую механическую обработку - строжку, обточку, расточку и т. д.

В последнее время газовую резку принято называть кислородной, так как все ее процессы связаны с применением кислорода. Кроме газовой резки различают: кислородно-флюсовую, плазменную, дуговую, воздушно-дуговую, кислородно-дуговую, лазерную, копьевую и др.

Все указанные способы резки выполняются путем нагрева ме- ;- талл‘а, поэтому их объединяет оощее название - термическая резка металла.

  • сущность газовой (кислородной) резки заключается в том, что на предварительно нагретый участок разрезаемого металла до температуры воспламенения подается струя режущего кислорода. При этом происходит интенсивное окисление поверхности металла с выделением большого количества тепла. Верхние слои металла, сгорая, подогревают до воспламенения в струе кислорода нижележащие слои до тех пор, пока кислородная струя полностью не прорежет металл по всей толщине. Образующиеся в процессе резки продукты окисления металла (окислы, шлаки) выдуваются кинетической энергией струи из полости реза.

Таким образом, кислородная резка представляет собой совокупность трех одновременно происходящих процессов: подогрев металла до температуры воспламенения, сгорание металла в струе кислорода, удаление расплавленного шлака из полости реза. При отсутствии хотя бы одного из указанных процессов резка становится невозможной.

При кислородной резке необходимо, чтобы свойства разрезаемого металла удовлетворяли следующим условиям:
– температура воспламенения разрезаемого металла в среде кислорода должна быть ниже температуры его плавления;
– температура плавления окислов - не превышать температуру плавления разрезаемого металла. В противном случае образующиеся тугоплавкие окислы будут препятствовать дальнейшему окислению металла;
– количество тепла, выделяющегося в процессе кислородной резки, должно быть достаточным для нагрева прилегающих участков металла до температуры его воспламенения и непрерывного поддержания процесса резки. При этом металл должен хорошо проводить тепло, чтобы не препятствовать своему нагреву;
– образующиеся при резке окислы должны быть жидкотекучи-ми и легко выдуваться кислородной струей из полости реза;
– ручная и механизированная резка

Кислородная резка может быть ручная или механизированная (автоматическая, машинная). Ручная резка производится с помощью ручных резаков (Р2А-01, РЗП-01 и др.). Резак перемещается во всех положениях вручную.

Механизированная кислородная резка отличается тем, что резак или несколько резаков перемещаются по линии реза с помощью механических устройств. Для этой цели разработаны различные стационарные машины (ПКЦ 3,5-6-10УХЛ4, ПкК-2-4Ф-2, «Днепр 2,5-К2», АСШ-70 и др.) с механическим, магнитным, фотоэлектронным и программным управлением, а также переносные машины «Микрон-2», «Спутник-3», «Орбита-2».

Ручная кислородная резка, несмотря на свою простоту и универсальность, не обеспечивает высокой чистоты и точности вырезаемых заготовок, поэтому запрещается в качестве последней операции (требуется механическая обработка). При ручной резке используется только один резак. Применение двух и более резаков невозможно.

Механизированная кислородная резка по сравнению с ручной обладает следующими преимуществами:
– чистота реза и точность вырезаемых деталей во многих случаях не требуют последующей механической обработки;
– возможность одновременного использования двух и более резаков, что значительно повышает производительность резки;
– не требуется предварительной разметки или наметки по шаблону разрезаемого металла;
– обеспечивается более рациональное использование кислорода;
– возможность осуществления пакетной резки.

Характерным примером замены механической обработки термической резкой является внедрение операции вырезки (вместо расточки) отверстия в двутавре тормозной балки шахтной подъемной машины (рис. 1).

Рис. 1. Пример вырезки (вместо расточки) отверстия в двутавре тормозной балки подъемной машины

Внедрение механизированной резки дало возможность разгрузить крупные расточные станки, устранить транспортировку двутавра в механический цех и обратно, что привело к снижению себестоимости сварного узла и значительному сокращению цикла его изготовления.

Рекомендуем почитать

Наверх