Ионно вакуумное азотирование. Ионное азотирование деталей

Управление 04.04.2020
Управление

В нашей компании по выгодной цене вы можете заказать ионно-плазменное азотирование в Нижнем Новгороде. Это одна из разновидностей химической термообработки. Данная технология применяется обычно для обработки изделий и деталей из чугуна, стали и других металлов и сплавов. Применение ионно-плазменного азотирования актуально в том случае, если требуется:

    повысить прочность металла;

    повысить износостойкость изделия;

    минимизировать вероятность прилипания металлов к поверхности формы в процессе литья;

    повысить антизадирные свойств и т. д.

Применяемые нами установки были разработаны специалистами нашей фирмы, поэтому мы досконально знаем, как именно проводится обработка подобного типа. Мы являемся настоящими профессионалами в этой сфере деятельности.

Преимущества сотрудничества с нами

Наша компания более 17 лет работает в сфере производства установок вакуумного напыления покрытий и оказания соответствующих услуг. Поэтому своим клиентам мы можем предложить следующие условия:

    Профессиональная консультационная помощь по любым вопросам и на любом этапе сотрудничества с нами.

    Все работы выполняются нашими квалифицированными специалистами с соблюдением всех международных норм и правил.

    Наши постоянные клиенты и партнеры – крупные предприятия автомобильной, космической, авиационной, химической сфер промышленности.

    Многолетнее сотрудничество с ведущими российскими и зарубежными научно-исследовательскими институтами и предприятиями позволяет нам постоянно повышать качество оказываемых услуг.

Азотирование, в процессе выполнения которого поверхностный слой стального изделия насыщается азотом, стало использоваться в промышленных масштабах относительно недавно. Такой метод обработки, предложенный к использованию академиком Н.П. Чижевским, позволяет улучшить многие характеристики изделий, изготовленных из стальных сплавов.

Суть технологии

Азотирование стали, если сравнивать его с таким популярным методом обработки данного металла, как цементация, отличается рядом весомых преимуществ. Именно поэтому данная технология стала применяться в качестве основного способа улучшения качественных характеристик стали.

При азотировании стальное изделие не подвергается значительному термическому воздействию, при этом твердость его поверхностного слоя значительно увеличивается. Важно, что размеры азотируемых деталей не изменяются. Это позволяет применять такой метод обработки для стальных изделий, которые уже прошли закалку с высоким отпуском и отшлифованы до требуемых геометрических параметров. После выполнения азотирования, или азотации, как часто называют этот процесс, сталь можно сразу подвергать полировке или другим методам финишной обработки.

Азотирование стали заключается в том, что металл подвергают нагреву в среде, характеризующейся высоким содержанием аммиака. В результате такой обработки с поверхностным слоем металла, насыщающимся азотом, происходят следующие изменения.

  • За счет того, что твердость поверхностного слоя стали повышается, улучшается износостойкость детали.
  • Возрастает усталостная прочность изделия.
  • Поверхность изделия становится устойчивой к коррозии. Такая устойчивость сохраняется при контакте стали с водой, влажным воздухом и паровоздушной средой.

Выполнение азотирования позволяет получить более стабильные показатели твердости стали, чем при осуществлении цементации. Так, поверхностный слой изделия, которое было подвергнуто азотированию, сохраняет свою твердость даже при нагреве до температуры 550–600°, в то время как после цементации твердость поверхностного слоя может начать снижаться уже при нагреве изделия свыше 225°. Прочностные характеристики поверхностного слоя стали после азотирования в 1,5–2 раза выше, чем после закалки или цементации.

Как протекает процесс азотирования

Детали из металла помещают в герметично закрытый муфель, который затем устанавливается в печь для азотирования. В печи муфель с деталью нагревают до температуры, которая обычно находится в интервале 500–600°, а затем выдерживают некоторое время при таком температурном режиме.

Чтобы сформировать внутри муфеля рабочую среду, необходимую для протекания азотирования, в него под давлением подается аммиак. Нагреваясь, аммиак начинает разлагаться на составные элементы, данный процесс описывает следующая химическая формула:

2NH 3 → 6H + 2N.

Атомарный азот, выделяющийся в процессе протекания такой реакции, начинает диффузировать в металл, из которого изготовлена обрабатываемая деталь, что приводит к образованию на ее поверхности нитридов, характеризующихся высокой твердостью. Чтобы закрепить результат и не дать поверхности детали окислиться, муфель вместе с изделием и аммиаком, который в ней продолжает оставаться, медленно охлаждают вместе с печью для азотирования.

Нитридный слой, формирующийся на поверхности металла в процессе азотирования, может иметь толщину в интервале 0,3–0,6 мм. Этого вполне достаточно для того, чтобы наделить изделие требуемыми прочностными характеристиками. Обработанную по такой технологии сталь можно не подвергать никаким дополнительным методам обработки.

Процессы, протекающие в поверхностном слое стального изделия при его азотировании, достаточно сложны, но уже хорошо изучены специалистами металлургической отрасли. В результате протекания таких процессов в структуре обрабатываемого металла формируются следующие фазы:

  • твердый раствор Fe 3 N, характеризующийся содержанием азота в пределах 8–11,2%;
  • твердый раствор Fe 4 N, азота в котором содержится 5,7–6,1%;
  • раствор азота, формирующийся в α-железе.

Дополнительная α-фаза в структуре металла формируется тогда, когда температура азотирования начинает превышать 591°. В тот момент, когда степень насыщения данной фазы азотом достигает своего максимума, в структуре металла формируется новая фаза. Эвтектоидный распад в структуре металла происходит тогда, когда степень его насыщения азотом достигает уровня 2,35%.

Клапана высокотехнологичных двигателей внутреннего сгорания обязательно проходят процесс азотирования

Факторы, оказывающие влияние на азотацию

Основными факторами, которые оказывают влияние на азотирование, являются:

  • температура, при которой выполняется такая технологическая операция;
  • давление газа, подаваемого в муфель;
  • продолжительность выдержки детали в печи.

На эффективность протекания такого процесса также оказывает влияние степень диссоциации аммиака, которая, как правило, находится в интервале 15–45%. При повышении температуры азотирования твердость формируемого слоя снижается, но процесс диффузии азота в структуру металла ускоряется. Снижение твердости поверхностного слоя металла при его азотировании происходит из-за коагуляции нитридов легирующих элементов, входящих в его состав.

Для ускорения процесса азотирования и повышения его эффективности применяют двухэтапную схему его выполнения. Первый этап азотирования при использовании такой схемы выполняют при температуре, не превышающей 525°. Это позволяет придать поверхностному слою стального изделия высокую твердость. Для выполнения второго этапа процедуры деталь нагревают до температуры 600–620°, при этом глубина азотированного слоя достигает требуемых значений, а сам процесс ускоряется практически в два раза. Твердость поверхностного слоя стального изделия, обработанного по такой технологии, не ниже, чем аналогичный параметр изделий, прошедших обработку по одноступенчатой методике.

Типы азотируемых сталей

Обработке по технологии азотирования могут подвергаться как углеродистые, так и , характеризующихся содержанием углерода в пределах 0,3–0,5%. Максимального эффекта при использовании такой технологической операции удается добиться в том случае, если ей подвергаются стали, в химический состав которых входят легирующие элементы, формирующие твердые и термостойкие нитриды. К таким элементам, в частности, относятся молибден, алюминий, хром и другие металлы, обладающие подобными характеристиками. Стали, содержащие молибден, не подвержены такому негативному явлению, как отпускная хрупкость, которая возникает при медленном остывании стального изделия. После азотирования стали различных марок приобретают следующую твердость:

Легирующие элементы, находящиеся в химическом составе стали, увеличивают твердость азотированного слоя, но вместе с тем уменьшают его толщину. Наиболее активно на толщину азотируемого слоя оказывают влияние такие химические элементы, как вольфрам, молибден, хром и никель.

В зависимости от сферы применения изделия, которое подвергается процедуре азотирования, а также от условий его эксплуатации для осуществления такой технологической операции рекомендуется использовать определенные марки стали. Так, в соответствии с технологической задачей, которую необходимо решить, специалисты советуют применять для азотирования изделия из следующих марок сталей.
38Х2МЮА

Это сталь, которая после азотирования отличается высокой твердостью наружной поверхности. Алюминий, содержащийся в химическом составе такой стали, снижает деформационную стойкость изделия, но в то же время способствует повышению твердости и износостойкости его наружной поверхности. Исключение алюминия из химического состава стали позволяет создавать из нее изделия более сложной конфигурации.

40Х, 40ХФА

Данные легированные стали используются для изготовления деталей, применяемых в области станкостроения.

30Х3М, 38ХГМ, 38ХНМФА, 38ХН3МА

Эти стали служат для производства изделий, подвергающихся в процессе своей эксплуатации частым циклическим нагрузкам на изгиб.

30Х3МФ1

Из данного стального сплава изготавливаются изделия, к точности геометрических параметров которых предъявляются высокие требования. Для придания более высокой твердости деталям из данной стали (это преимущественно детали топливного оборудования) в ее химический состав могут добавлять кремний.

Технологическая схема азотирования

Чтобы выполнить традиционное газовое азотирование, инновационное плазменное азотирование или ионное азотирование, обрабатываемую деталь подвергают ряду технологических операций.

Подготовительная термообработка

Такая обработка заключается в закалке изделия и его высоком отпуске. Закалка в рамках выполнения такой процедуры осуществляется при температуре около 940°, при этом охлаждение обрабатываемого изделия производят в масле или воде. Последующий после выполнения закалки отпуск, проходящий при температуре 600–700°, позволяет наделить обрабатываемый металл твердостью, при которой его можно легко резать.

Механическая обработка

Эта операция заканчивается его шлифовкой, позволяющей довести геометрические параметры детали до требуемых значений.

Защита участков изделия, которые не требуют азотирования

Осуществляется такая защита путем нанесения тонкого слоя (не более 0,015 мм) олова или жидкого стекла. Для этого используется технология электролиза. Пленка из данных материалов, формирующаяся на поверхности изделия, не позволяет азоту проникать в его внутреннюю структуру.

Выполнение самого азотирования

Подготовленное изделие подвергают обработке в газовой среде.

Финишная обработка

Этот этап необходим для того, чтобы довести геометрические и механические характеристики изделия до требуемых значений.

Степень изменения геометрических параметров детали при выполнении азотирования, как уже говорилось выше, очень незначительна, и зависит она от таких факторов, как толщина слоя поверхности, который подвергается насыщению азотом; температурный режим процедуры. Гарантировать практически полное отсутствие деформации обрабатываемого изделия позволяет более усовершенствованная технология – ионное азотирование. При выполнении ионно-плазменного азотирования стальные изделия подвергаются меньшему термическому воздействию, благодаря чему их деформация и сводится к минимуму.

В отличие от инновационного ионно-плазменного азотирования, традиционное может выполняться при температурах, доходящих до 700°. Для этого может применяться сменный муфель или муфель, встроенный в нагревательную печь. Использование сменного муфеля, в который обрабатываемые детали загружаются заранее, перед его установкой в печь, позволяет значительно ускорить процесс азотирования, но не всегда является экономически оправданным вариантом (особенно в тех случаях, когда обработке подвергаются крупногабаритные изделия).

Типы рабочих сред

Для выполнения азотирования могут использоваться различные типы рабочих сред. Наиболее распространенной из них является газовая среда, состоящая на 50% из аммиака и на 50% из пропана или из аммиака и эндогаза, взятых в таких же пропорциях. Процесс азотирования в такой среде выполняется при температуре 570°. При этом изделие подвергается воздействию газовой среды на протяжении 3 часов. Азотированный слой, создаваемый при использовании такой рабочей среды, имеет небольшую толщину, но высокую прочность и износостойкость.

Большое распространение в последнее время получает метод ионно-плазменного азотирования, выполняемого в азотосодержащей разряженной среде.

Ионно-плазменное азотирования – взгляд «изнутри»

Отличительной особенностью ионно-плазменного азотирования, которое также называют обработкой при тлеющем разряде, является то, что обрабатываемую деталь и муфель подключают к источнику электрического тока, при этом изделие выступает в качестве отрицательно заряженного электрода, а муфель – в роли положительно заряженного. В результате между деталью и муфелем формируется поток ионов – своего рода плазма, состоящая из N 2 или NH 3 , за счет которой происходят и нагрев обрабатываемой поверхности, и ее насыщение необходимым количеством азота.

Кроме традиционного и ионно-плазменного азотирования процесс насыщения поверхности стали азотом может выполняться в жидкой среде. В качестве рабочей среды, которая имеет температуру нагрева порядка 570°, в таких случаях используется расплав цианистых солей. Время азотирования, выполняемого в жидкой рабочей среде, может составлять от 30 до 180 минут.

Короткий путь http://bibt.ru

Ионное азотирование.

Иногда такой процесс называют ионитрированием или азотированием в плазме тлеющего разряда. Сущность этого метода заключается в том, что в герметичном контейнере создается разреженная азотосодержащая атмосфера. С этой целью можно использовать чистый азот, аммиак или смесь азота и водорода. Внутри контейнера размещают азотируемые детали, которые подключают к отрицательному полюсу источника постоянного напряжения. Они играют роль катода. Анодом служит стенка контейнера. Между катодом и анодом включается высокое напряжение (500—1000 В). В этих условиях происходит ионизация газа. Образующиеся положительно заряженные ионы азота устремляются к отрицательному полюсу — катоду. Электрическое сопротивление газовой среды вблизи катода резко возрастает, вследствие чего почти все напряжение, подаваемое между анодом и катодом, падает на сопротивление вблизи катода, на расстоянии нескольких миллиметров от него. Благодаря этому создается очень высокая напряженность электрического поля вблизи катода.

Ионы азота, входя в эту зону высокой напряженности, разгоняются до больших скоростей и, соударяясь с деталью (катодом), внедряются в ее поверхность. При этом высокая кинетическая энергия, которую имели ионы азота, переходит в тепловую. В результате деталь за короткое время, примерно 15— 30 мин, разогревается до температуры 470—580°С, при которой происходит диффузия азота в глубь металла, т. е. идет процесс азотирования. Кроме того, при соударении ионов с поверхностью детали происходит выбивание ионов железа с ее поверхности. Благодаря этому происходит очистка поверхности от окисных пленок, препятствующих азотированию. Это особенно важно для азотирования коррозионно-стойких сталей, у которых такая пассивирующая пленка обычными способами удаляется очень трудно.

Ионное азотирование по сравнению с азотированием в печах имеет следующие преимущества:

1) сокращение общей продолжительности процесса в 1,5—2 раза;

2) возможность регулирования процесса с целью получения азотированного слоя с заданными свойствами;

3) меньшую деформацию деталей благодаря равномерному нагреву; 4) возможность азотирования коррозионно-стойких сталей и сплавов без дополнительной депассивирующей обработки.

Главная > Документ

Технологические возможности ионного азотирования в упрочнении изделий из конструкционных и инструментальных сталей

М. Н. Босяков, С. В. Бондаренко, Д.В.Жук, П.А.Матусевич

СП «Авиценна Интернешнл », Республика Беларусь, г. Минск,

Ул. Сурганова, 2а, 220012, тел. +375 17 2355002

Ионно-плазменное азотирование (ИПА) – метод химико-термической обработки изделий из стали и чугуна с большими технологическими возможностями, позволяющий получать диффузионные слои нужного состава путем использования разных газовых сред, т.е. процесс диффузионного насыщения управляем и может быть оптимизирован в зависимости от конкретных требований к глубине слоя и твердости поверхности. Температурный диапазон ионного азотирования шире, чем газового и находится в пределах 400-600 0 С. Обработка при температурах ниже 500 0 С особенно эффективна при упрочнении изделий из инструментальных легированных сталей для холодной обработки, быстрорежущих и мартенситно-стареющих сталей, т.к. значительно повышаются их эксплуатационные свойства при сохранении твердости сердцевины на уровне 55-60 HRC. Упрочняющей обработке методом ИПА подвергаются детали и инструменты практически всех отраслей промышленности (рис.1).

Рис. 1. Применение ионно-плазменного азотирования для упрочнения различных изделий

В результате ИПА можно улучшить следующие характеристики изделий: износостойкость, усталостную выносливость, антизадирные свойства, теплостойкость и коррозионную стойкость. В сравнении с широко используемыми способами упрочняющей химико-термической обработки стальных деталей, такими, как цементация, нитроцементация, цианирование и газовое азотирование в печах, метод ИПА имеет следующие основные преимущества:

    более высокая поверхностная твердость азотированных деталей; отсутствие деформации деталей после обработки и высокая чистота поверхности; повышение предела выносливости и увеличение износостойкости обработанных деталей; более низкая температура обработки, благодаря чему, в стали не происходит структурных превращений; возможность обработки глухих и сквозных отверстий; сохранение твердости азотированного слоя после нагрева до 600-650 С; возможность получения слоев заданного состава; возможность обработки изделий неограниченных размеров и форм; отсутствие загрязнения окружающей среды; повышение культуры производства; снижение себестоимости обработки в несколько раз.
Преимущества ИПА проявляются и в существенном сокращении основных издержек производства. Так, например, по сравнению с газовым азотированием в печах, ИПА обеспечивает:
    сокращение продолжительности обработки в 2–5 раз, как за счет снижения времени нагрева и охлаждения садки, так и за счет уменьшения времени изотермической выдержки; снижение хрупкости упрочненного слоя; сокращение расхода рабочих газов в 20–100 раз; сокращение расхода электроэнергии 1,5-3 раза; исключение операции депассивации; снижение деформации настолько, чтобы исключить финишную шлифовку; простота и надежность экранной защиты от азотирования неупрочняемых поверхностей; улучшение санитарно-гигиенических условий производства; полное соответствие технологии всем современным требованиям по охране окружающей среды.
По сравнению с закалкой обработка методом ИПА позволяет :
    исключить деформации; увеличить ресурс работы азотированной поверхности в 2-5 раз.
Применение ИПА вместо цементации, нитроцементации, газового или жидкостного азотирования, объемной или ТВЧ закалки позволяет сэкономить основное оборудование и производственные площади, снизить станочные и транспортные затраты, уменьшить расход электроэнергии и активных газовых сред. Принцип действия ИПА заключается в том, что в разряженной (р =200-1000 Па) азотсодержащей газовой среде между катодом – деталями – и анодом – стенками вакуумной камеры – возбуждается аномальный тлеющий разряд, образующий активную среду (ионы, атомы, возбужденные молекулы), обеспечивающую формирование азотированного слоя, состоящего из внешней – нитридной зоны и располагающейся под ней диффузионной зоны. Технологическими факторами, влияющими на эффективность ионного азотирования, являются температура процесса, продолжительность насыщения, давление, состав и расход рабочей газовой смеси. Температура процесса , площадь садки, участвующей в теплообмене и эффективность теплообмена со стенкой (количество экранов) определяют мощность, необходимую для поддержания разряда и обеспечивающую нужную температуру изделий.Выбор температуры зависит от степени легированности азотируемой стали нитридообразующими элементами: чем выше степень легированности, тем выше температура. Температура обработки должна быть как минимум на 10-20 0 С ниже температуры отпуска. Длительность и температура процесса насыщения определяют глубину слоя, распределение твердости по глубине и толщину нитридной зоны. Состав насыщающей среды зависит от степени легирования обрабатываемой стали и требований к твердости и глубине азотированного слоя. Давление процесса должно быть таким, чтобы обеспечивалось плотное «облегание» разрядом поверхности изделий и получение равномерного азотированного слоя. Однако, при этом следует иметь в виду, что разряд на всех стадиях процесса должен быть аномальным, т. е. поверхность всех деталей в садке полностью должна быть покрыта свечением, а плотность разрядного тока должна быть больше нормальной плотности для данного давления с учетом эффекта нагрева газа в катодной области разряда. С появлением установок ИПА нового поколения, использующих в качестве рабочей среды регулируемые по составу смеси водорода, азота и аргона, а так же плазму «пульсирующего», а не постоянного тока, технологичность процесса ионного азотирования существенно возросла. Использование комбинированного нагрева («горячие» стенки камеры) либо усиленной тепловой защиты (тройной теплозащитный экран) наряду с возможностью независимо регулировать состав газа и давление в камере позволяют при обработке режущего инструмента избежать перегрева тонких режущих кромок в процессе разогрева садки, точно регулировать время насыщения а, соответственно, и глубину слоя, т.к. разогрев изделий возможно производить в безазотной среде, например, в смеси Ar+H 2 . Эффективная теплоизоляция в рабочей камере (тройной теплозащитный экран) позволяет обрабатывать изделия с низким удельным энергопотреблением, что позволяет свести к минимуму температурные различия внутри садки во время обработки. Об этом свидетельствует распределение микротвердости по глубине азотированного слоя для образцов, располагавшихся в разных местах садки (рис. 2).

Рис. 2. Распределение микротвердости по глубине азотированного слоя для трех образцов располагавшихся в разных местах садки.

а, в – шестерня массой 10,1 кг, 51 шт., ст – 40Х, модуль 4,5, выдержка 16 часов, Т= 530 0 С;

б, г – шестерня массой 45 кг, 11 шт., ст – 38ХН3МФА, модуль 3,25 (наружный венец)

и 7 мм (внутренний венец), выдержка 16 часов, Т=555 0 С.

Ионное азотирование – эффективный метод упрочняющей обработки деталей из легированных конструкционных сталей : шестерен, зубчатых венцов, вал-зубчатых шестерен, валов, прямозубых, конических и цилиндрических шестерен, муфт, валов-шестерен сложной геометрической конфигурации и др. Цементация, нитроцементация и ТВЧ-закалка оправдывают себя при изготовлении тяжелонагруженных деталей (зубчатые колеса, оси, валы и др.) низкой и средней точности, не требующих последующей шлифовки. Указанные виды термообработки экономически нецелесообразны при изготовлении средне- и низконагруженных высокоточных деталей, т.к. при данной обработке наблюдается значительное коробление и требуется последующая шлифовка. Соответственно, при шлифовке необходимо снимать значительную толщину упрочненного слоя. ИПА позволяет существенно снизить коробление и деформацию деталей при сохранении шероховатости поверхности в пределах Ra=0,63…1,2 мкм, что позволяет в подавляющем большинстве случаев использовать ИПА как финишную обработку. Применительно к станкостроению, ионное азотирование зубчатых колес в существенной мере снижает шумовые характеристики станков, тем самым, повышая их конкурентоспособность на рынке. ИПА наиболее эффективно при обработке крупносерийных однотипных деталей: шестерен, валов, осей, зубчатых валов, вал-зубчатых шестерен и др. Шестерни, подвергнутые плазменному азотированию, имеют лучшую стабильность размеров по сравнению с цементованными шестернями и могут использоваться без дополнительной обработки. При этом несущая способность боковой поверхности и прочность основания зуба, достигаемые с помощью плазменного азотирования, соответствуют цементованным шестерням (таб. 1).

Таблица 1

Характеристики сопротивления усталости сталей в зависимости от способов упрочнения зубчатых колес

Тип стали

Вид обработки

Предел выносливости при изгибе, МПа

Предел контактной выносливости поверхности, МПа

Твердость боковой поверхности зубъев, HV

Легированные

Упрочнение

Улучшаемые (40Х, 40ХН, 40ХФА, 40ХН2МА, 40ХМФА, 38ХМ, 38ХН3МФА, 38Х2Н2МФА, 30Х2НМ и др.)

Азотирование

Нормализованные

Плазменная или индукционная закалка

Специальные азотируемые

(38ХМЮА, 38Х2МЮА, 35ХЮА, 38ХВФЮА, 30Х3МФ и др.)

Азотирование

Легированные

Цементация и нитроцементация

При упрочняющей обработке методом ионного азотирования деталей из цементуемых, низко- и среднелегированных сталей (18ХГТ, 20ХНЗА, 20ХГНМ, 25ХГТ, 40Х, 40ХН, 40ХФА и др.) необходимо в начале проводить улучшение поковок – объемную закалку и отпуск до твердости 241-285 НВ (для некоторых сталей – 269-302 НВ), затем механическую обработку и в завершение – ионное азотирование. Для обеспечения минимальной деформации изделий перед азотированием для снятия напряжений рекомендуется проводить отжиг в атмосфере защитного газа, причем температура отжига должна быть выше температуры азотирования. Отжиг следует проводить перед точной механической обработкой. Глубина азотированного слоя, формируемого на указанных изделиях, изготовленных из сталей 40Х, 18ХГТ, 25ХГТ, 20Х2Н4А и др., составляет 0,3-0,5 мм при твердости 500-800 HV в зависимости от марки стали (рис 3). Для передач, работающих в условиях более тяжелых нагрузок, азотированный слой должен быть на уровне 0,6-0,8 мм с тонкой нитридной зоной или вообще без нее.

Рис. 3. Распределение микротвердости по глубине азотированного слоя для разных сталей

Оптимизация свойств упрочненного слоя определяется совокупностью характеристик основного материала (твердость сердцевины) и параметрами азотированного слоя. Характер нагрузки определяет глубину диффузионного слоя, тип и толщину нитридного слоя:

    износ – g’- или e-слой; динамическая нагрузка – ограниченная толщина нитридного слоя или вообще без нитридного слоя; коррозия – e-слой.
Независимое управление расходом каждого из компонентов газовой смеси, давлением в рабочей камере и вариация температурой процесса позволяют формировать слои различной глубины и твердости (рис. 4), обеспечивая тем самым стабильное качество обработки с минимальным разбросом свойств от детали к детали и от садки к садке (рис. 5).

Рис. 4. Распределение микротвердости по глубине азотированного слоя стали 40Х

1, 3, 5 – одностадийный процесс;

2,4 – двухстадийный процесс по содержанию N 2 в рабочей смеси

1,2 – T =530 0 C , t =16 часов; 3 – T =560 0 C , t =16 часов;

4 – T =555 0 C , t =15 часов, 5 – T = 460 0 С, t = 16 часов

Рис. 5. Разброс микротвердости по глубине азотированного слоя

для стали 40Х (а) и 38ХНЗМФА (б) для серийных процессов.

Ионное азотирование широко известно и как один из эффективных методов повышения износостойкости режущего инструмента, изготовленного из быстрорежущих сталей марки Р6М5, Р18, Р6М5К5, Р12Ф4К5 и др. Азотирование повышает износостойкость инструмента и его теплостойкость. Азотированная поверхность инструмента, обладающая пониженным коэффициентом трения и улучшенными антифрикционными свойствами, обеспечивает более легкий отвод стружки, а также предотвращает ее налипание на режущие кромки и образование лунок износа, что дает возможность увеличить подачу и скорость резания. Оптимальной структурой азотированной быстрорежущей стали является высокоазотистый мартенсит, не содержащий избыточных нитридов. Указанная структура обеспечивается насыщением поверхности инструмента азотом при температуре 480-520 0 С в процессе кратковременного азотирования (до 1 часа). При этом формируется упрочненный слой глубиной 20-40 мкм с микротвердостью поверхности 1000-1200 HV0,5 при твердости сердцевины 800-900 HV (рис. 6) , а стойкость инструмента после ионного азотирования увеличивается в 2–8 раз в зависимости от его типа и вида обрабатываемого материала.

Рис. 6. Структура азотированного слоя стали Р6М5 (а) и распределение микротвердости по глубине слоя (б).

Главным достоинством ионного азотирования инструмента является возможность получения только диффузионного упрочненного слоя, либо слоя с монофазным нитридом Fe 4 N (’-фаза) на поверхности, в отличие от классического газового азотирования в аммиаке, где нитридный слой состоит из двух фаз - ’+, что является источником внутренних напряжений на границе раздела фаз и вызывает хрупкость и отслаивание упрочненного слоя при эксплуатации. Ионное азотирование является также одним из основных методов увеличения долговечности штампового инструмента и литьевой оснастки из сталей 5ХНМ, 4Х5МФС, 3Х2В8, 4Х5В2ФС, 4Х4ВМФС, 38Х2МЮА, Х12, Х12М, Х12Ф1. В результате ионного азотирования можно улучшить следующие характеристики изделий:

    Ковочные штампы для горячей штамповки и пресс-формы для литья металлов и сплавов – повышается износостойкость, уменьшается прилипание металла. Пресс-формы для литья алюминия под давлением – азотированный слой препятствует прилипанию металла в зоне подачи жидкой струи, и процесс заполнения формы является менее турбулентным, что увеличивает срок службы пресс-форм, а отливка получается более высокого качества.
Существенно улучшает ионное азотирование и эксплуатационные характеристики инструмента для холодной (T < 250 0 С) обработки – вытяжка, гибка, штамповка, прессование, резка, чеканка и прошивка. Основные требования, обеспечивающие высокую работоспособность такого инструмента – высокая прочность при сжатии, износостойкость и сопротивление холодной ударной нагрузке – достигаются в результате упрочняющей обработки методом ионного азотирования. Если для инструмента используется высокохромистая сталь (12% хрома), то азотированный слой должен быть только диффузионным, если низколегированные стали – то дополнительно к диффузионному слою должен быть γ-слой – твердый и пластичный. Особенностью ионного азотирования высокохромистых сталей является то, что выбирая температуру процесса можно в широких пределах сохранять твердость сердцевины изделия, задаваемую предварительной термической обработкой (табл. 2). Для получения износостойкого поверхностного слоя при сохранении вязкой сердцевины штампа необходимо проводить вначале закалку с отпуском на вторичную твердость, размерную обработку и затем ионное азотирование. Для исключения или сведения к минимуму деформаций, возникающих при ионном азотировании штампового инструмента, перед окончательной механической обработкой рекомендуется проводить отжиг в среде инертного газа при температуре как минимум на 20 С ниже температуры отпуска. При необходимости применяют полировку азотированных рабочих поверхностей.

Таблица 2.

Характеристики легированных сталей после ионно-плазменного азотирования.

Марка стали

Твердость сердц е вины,

Температура процесса

0 С

Характеристики слоя

Тип реко-менду-емого слоя соеди-нений

Глубина, мм

тв-сть,

HV 1

Толщина слоя соед.,

Стали для горячей обработки

Стали для холодной обработки

20.01.2008

Ионно-плазменное азотирование (ИПА)- это разновидность химико-термической обработки деталей машин, инструмента, штамповой и литьевой оснастки, обеспечивающая диффузионное насыщение поверхностного слоя стали (чугуна) азотом или азотом и углеродом в азотно-водородной плазме при температуре 450-600 °С, а также титана или титановых сплавов при температуре 800-950 °С в азотной плазме.

Суть ионно-плазменного азотирования заключается в том, что в разряженной до 200-000 Па азотсодержащей газовой среде между катодом, на котором располагаются обрабатываемые детали, и анодом, роль которого выполняют стенки вакуумной камеры, возбуждается аномальный тлеющий разряд, образующий активную среду (ионы, атомы, возбужденные молекулы). Это обеспечивает формирование на поверхности изделия азотированного слоя, состоящего из внешней - нитридной зоны с располагающейся под ней диффузионной зоной.

Варьируя состав насыщающего газа, давление, температуру, время выдержки можно получать слои заданной структуры с требуемым фазовым составом, обеспечивая строго регламентируемые свойства сталей, чугунов, титана или его сплавов. Оптимизация свойств упрочняемой поверхности обеспечивается за счет необходимого сочетания нитридного и диффузионного слоев, которые врастают в основной материал. В зависимости от химического состава нитридный слой является либо y-фазой (Fe4N) либо e-фазой (Fe2-3N). e-нитридный слой является коррозийно-стойким, а y-слой - износостойким, но относительно пластичным.

При этом с помощью ионно-плазменного азотирования возможно получение:

    диффузионного слоя с развитой нитридной зоной, обеспечивающей высокую сопротивляемость коррозии и прирабатываемость трущихся поверхностей - для деталей, работающих на износ

    диффузионного слоя без нитридной зоны - для режущего, штампового инструмента или деталей, работающих при высоких давлениях со знакопеременными нагрузками.

Ионно-плазменным азотированием можно улучшить следующие характеристики изделий:

    износостойкость

    усталостную выносливость

    антизадирные свойства

    теплостойкость

    коррозионную стойкость

Основным достоинством метода является стабильное качество обработки с минимальным разбросом свойств от детали к детали, от садки к садке. В сравнении с широко используемыми способами упрочняющей химико-термической обработки стальных деталей, такими, как цементация, нитроцементация, цианирование, газовое азотирование метод ионно-плазменного азотирования имеет следующие основные преимущества:

    более высокая поверхностная твердость азотированных деталей

    отсутствие деформации деталей после обработки

    повышение предела выносливости с увеличением износостойкости обработанных деталей

    более низкая температура процесса, благодаря чему у обрабатываемых деталей отсутствуют структурные изменения

    возможность обработки глухих и сквозных отверстий

    сохранение твердости азотированного слоя после нагрева до 600 - 650 °С

    возможность получения слоев заданного состава

    возможность обработки изделий неограниченных размеров любой формы

    отсутствие загрязнения окружающей среды

    повышение культуры производства

    снижение себестоимости обработки в несколько раз

Преимущества ионно-плазменного азотирования проявляются в существенном сокращении основных издержек производства. Так например, по сравнению с газовым азотированием ИПА обеспечивает:

    сокращение продолжительности обработки от 2 до 5 раз, как за счет снижения времени нагрева - охлаждения садки, так и за счет уменьшения времени изотермической выдержки

    сокращение расхода рабочих газов (20 - 100 раз)

    сокращение расхода электроэнергии (1,5 - 3 раза)

    снижение деформации настолько, чтобы исключить финишную шлифовку

    улучшение санитарно-гигиенических условий производства

    полное соответствие технологии всем современным требованиям по охране окружающей среды

По сравнению с закалкой обработка методом ионно-плазменного азотирования позволяет:

    исключить деформации

    увеличить ресурс работы азотированной поверхности (2-5 раз)

Применение ионно-плазменного азотирования вместо цементации, нитроцементации, газового или жидкостного азотирования, объемной или ТВЧ закалки позволяет:

    сэкономить основное оборудование и производственные площади

    снизить станочные расходы, транспортные затраты

    уменьшить расход электроэнергии, активных газовых сред.

Основными потребителями оборудования для ионно-плазменного азотирования являются автомобильные, тракторные, авиационные, судостроительные, судоремонтные, машино- / станкостроительные заводы, заводы по производству сельскохозяйственной техники, насосного и компрессорного оборудования, шестерен, подшипников, алюминиевых профилей, энергетических установок...

Метод ионно-плазменного азотирования является одним из наиболее динамично развивающихся направлений химико-термической обработки в индустриально развитых странах. Широкое применение метод ИПА нашел в автомобилестроении. Он с успехом применяется ведущими авто- / моторостроительными предприятиями мира: Daimler Chrysler (Mercedes), Audi, Volkswagen, Voith, Volvo.
Например, данным методом обрабатываются следующие изделия:

    форсунки для легковых автомобилей, несущие пластины автоматического привода, матрицы, пуансоны, штампы, пресс-формы (Daimler Chrysler)

    пружины для системы впрыска (Opel)

    коленчатые валы (Audi)

    распределительные (кулачковые) валы (Volkswagen)

    коленчатые валы для компрессора (Atlas, США и Wabco, Германия)

    шестерни для BMW (Handl, Германия)

    автобусные шестерни (Voith)

    упрочнения прессового инструмента в производстве алюминиевых изделий(Нугховенс, Скандекс, Джон Девис и др.)

Есть положительный опыт промышленного использования данного метода странами СНГ: Беларусь - МЗКТ, МАЗ, БелАЗ; Россия - АвтоВАЗ, КамАЗ, ММПП « Салют », Уфимское моторостроительное объединение (УМПО).
Методом ИПА обрабатываются:

    шестерни (МЗКТ)

    шестерни и другие детали (МАЗ)

    шестерни большого (более 800 мм) диаметра (БелАЗ)

    впускные и выпускные клапаны (АвтоВАЗ)

    коленчатые валы (КамАЗ)

Как показывает мировой опыт применения технологии ионно-плазменного азотирования, экономический эффект от ее внедрения обеспечивается, главным образом, за счет снижения расхода электроэнергии, рабочих газов, сокращения трудоемкости изготовления изделий из-за существенного уменьшения объема шлифовальных работ, повышения качества продукции.

В отношении режущего и штампового инструмента, экономический эффект обеспечивается за счет снижения его расхода в силу повышения в 4 и более раз его износостойкости с одновременным увеличением режимов резания.

Для некоторых изделий ионное-плазменное азотирование является единственным способом получения готового изделия с минимальным процентом брака.

Кроме того, процесс ИПА обеспечивает полную экологическую безопасность.

Ионно-плазменное азотирование может использоваться на производстве взамен жидкостного или газового азотирования, цементации, нитроцементации, ТВЧ-закалки.

Рекомендуем почитать

Наверх