Материалы для ионно плазменное азотирование. Технологические возможности ионного азотирования в упрочнении изделий из конструкционных и инструментальных сталей

Управление  04.04.2020
Управление 

ИОННО-ПЛАЗМЕННОЕ АЗОТИРОВАНИЯ КАК ОДИН ИЗ СОВРЕМЕННЫХ МЕТОДОВ ПОВЕРХНОСТНОГО УПРОЧНЕНИЯ МАТЕРИАЛОВ

, , студенты;

, ст. преподаватель

Повышение качества металла и его механических свойств – это основной путь увеличения долговечности деталей и один из главных источников экономии сталей и сплавов. Повышение качества и долговечности изделий производят за счет рационального выбора материалов и методов упрочнения при достижении высокой технико-экономической эффективности. Существует много различных методов поверхностного упрочнения – закалка токами высокой частоты, пластическая деформация, химико-термическая обработка (ХТО), лазерная и ионно-плазменная обработка.

Традиционно применяемый в промышленности процесс газового азотирования , как один из видов ХТО, - это процесс диффузионного насыщения поверхностного слоя стали азотом. Азотирование с большим эффектом может быть использовано для повышения износостойкости, твердости, усталостной прочности, коррозионной и кавитационной стойкости различных материалов (конструкционных сталей, жаропрочных сталей и сплавов, немагнитных сталей и др.)., обладает рядом неоспоримых достоинств, таких как: относительная простота процесса, возможность использования универсального оборудования и приспособлений для укладки деталей, возможность азотирования деталей любых размеров и формы. Вместе с тем газовое азотирование имеет и целый ряд недостатков: большая длительность процесса (20-30 ч.) даже при азотировании на небольшие толщины слоя (0,2-0,3 мм); процесс трудно поддается автоматизации; затруднительна местная защита поверхностей, не подлежащих азотированию; нанесение различных гальванических покрытий (меднение, лужение, никелирование и др.) требует организации специального производства.

Одним из направлений интенсификации производства является разработка и внедрение на промышленных предприятиях новых перспективных процессов и технологий, позволяющих повысить качество выпускаемой продукции, сократить рабочие затраты на ее выпуск, повысить производительность труда и улучшить санитарно-гигиенические условия на производстве.

Такой прогрессивной технологией является ионно-плазменное азотирование (ИПА) - разновидность химико-термической обработки деталей машин, инструмента, штамповой и литьевой оснастки, обеспечивающая диффузионное насыщение поверхностного слоя стали и чугуна азотом (азотом и углеродом) в азотно-водородной плазме при температуре
400-600ºС, титана и титановых сплавов при температуре 800-950 ºС в азотосодержащей плазме. Этот процесс в настоящее время нашел широкое распространение во всех экономически развитых странах: США, Германии, Швейцарии, Японии, Англии, Франции.

Во многих случаях ионное азотирование является более целесообразным, чем газовое. К числу достоинств ИПА в плазме тлеющего разряда следует отнести следующие: возможность управления процессом насыщения, которая обеспечивает получение покрытия высокого качества, заданного фазового состава и строения; обеспечение абсолютно одинаковой активности газовой среды всей поверхности детали, охваченной тлеющим разрядом, это в конечном итоге обеспечивает получение равномерного по толщине азотированного слоя; снижение трудоемкости местной защиты поверхностей, не подлежащих азотированию, которая производится металлическими экранами; резкое сокращение длительности азотирования деталей (в 2-2,5 раза); снижение деформации деталей. Применение ИПА вместо цементации, нитроцементации, газового или жидкостного азотирования, объёмной или ТВЧ закалки позволяет сэкономить основное оборудование и производственные площади, снизить станочные и транспортные затраты, уменьшить расход электроэнергии и активных газовых сред.

Сущность процесса ионного азотирования заключается в следующем. В замкнутом вакуумированном пространстве между деталью (катодом) и кожухом печи (анодом) возбуждается тлеющий разряд. Азотирование проводится при аномальном тлеющем разряде, при высоком напряжении порядка Вт. Современные установки обеспечивают устойчивость тлеющего разряда на границе перехода его в нормальный и дуговой. Принцип действия дугогасящих устройств основан на кратковременном отключении установки при загорании вольтовой дуги.

Азотирование повышает коррозионную стойкость деталей из углеродистых и малолегированных сталей. Детали, азотированные для повышения поверхностной прочности и износостойкости, одновременно приобретают свойства против коррозии в среде пара, в водопроводной воде, в растворах щелочей, в неочищенном масле, бензине, загрязненной атмосфере. Ионное азотирование существенно повышает твердость деталей, что обусловлено высокодисперсными выделениями нитридов, количество и дисперсность которых влияет на достигаемую твердость. Азотированием повышают предел усталости. Это объясняется, во-первых, повышением прочности поверхности, во-вторых, возникновением в ней остаточных сжимающих напряжений.

Преимущества ионного азотирования наиболее полно реализуются при крупносерийном и массовом производстве, при упрочнении больших партий однотипных деталей. Варьируя состав газа, давление, температуру и время выдержки можно получать слои заданной структуры и фазового состава. Применение ионного азотирования даёт технический, экономический и социальный эффекты.

Ионно-плазменное азотирование (ИПА) - метод химико-термической обработки изделий из стали и чугуна с большими технологическими возможностями, позволяющий получать диффузионные слои нужного состава путем использования разных газовых сред, т.е. процесс диффузионного насыщения управляем и может быть оптимизирован в зависимости от конкретных требований к глубине слоя и твердости поверхности. плазменный азотирование микротвердость легированный

Температурный диапазон ионного азотирования шире, чем газового и находится в пределах 400-600 0 С. Обработка при температурах ниже 500 0 С особенно эффективна при упрочнении изделий из инструментальных легированных сталей для холодной обработки, быстрорежущих и мартенситно-стареющих сталей, т.к. значительно повышаются их эксплуатационные свойства при сохранении твердости сердцевины на уровне 55-60 HRC.

Упрочняющей обработке методом ИПА подвергаются детали и инструменты практически всех отраслей промышленности (рис.1).

Рис. 1.

В результате ИПА можно улучшить следующие характеристики изделий: износостойкость, усталостную выносливость, антизадирные свойства, теплостойкость и коррозионную стойкость.

В сравнении с широко используемыми способами упрочняющей химико-термической обработки стальных деталей, такими, как цементация, нитроцементация, цианирование и газовое азотирование в печах, метод ИПА имеет следующие основные преимущества:

  • · более высокая поверхностная твердость азотированных деталей;
  • · отсутствие деформации деталей после обработки и высокая чистота поверхности;
  • · повышение предела выносливости и увеличение износостойкости обработанных деталей;
  • · более низкая температура обработки, благодаря чему, в стали не происходит структурных превращений;
  • · возможность обработки глухих и сквозных отверстий;
  • · сохранение твердости азотированного слоя после нагрева до 600-650 С;
  • · возможность получения слоев заданного состава;
  • · возможность обработки изделий неограниченных размеров и форм;
  • · отсутствие загрязнения окружающей среды;
  • · повышение культуры производства;
  • · снижение себестоимости обработки в несколько раз.

Преимущества ИПА проявляются и в существенном сокращении основных издержек производства.

Так, например, по сравнению с газовым азотированием в печах, ИПА обеспечивает:

  • · сокращение продолжительности обработки в 2-5 раз, как за счет снижения времени нагрева и охлаждения садки, так и за счет уменьшения времени изотермической выдержки;
  • · снижение хрупкости упрочненного слоя;
  • · сокращение расхода рабочих газов в 20-100 раз;
  • · сокращение расхода электроэнергии 1,5-3 раза;
  • · исключение операции депассивации;
  • · снижение деформации настолько, чтобы исключить финишную шлифовку;
  • · простота и надежность экранной защиты от азотирования неупрочняемых поверхностей;
  • · улучшение санитарно-гигиенических условий производства;
  • · полное соответствие технологии всем современным требованиям по охране окружающей среды.

По сравнению с закалкой обработка методом ИПА позволяет :

  • · исключить деформации;
  • · увеличить ресурс работы азотированной поверхности в 2-5 раз.

Применение ИПА вместо цементации, нитроцементации, газового или жидкостного азотирования, объемной или ТВЧ закалки позволяет сэкономить основное оборудование и производственные площади, снизить станочные и транспортные затраты, уменьшить расход электроэнергии и активных газовых сред.

Принцип действия ИПА заключается в том, что в разряженной (р =200-1000 Па) азотсодержащей газовой среде между катодом - деталями - и анодом - стенками вакуумной камеры - возбуждается аномальный тлеющий разряд, образующий активную среду (ионы, атомы, возбужденные молекулы), обеспечивающую формирование азотированного слоя, состоящего из внешней - нитридной зоны и располагающейся под ней диффузионной зоны.

Технологическими факторами, влияющими на эффективность ионного азотирования, являются температура процесса, продолжительность насыщения, давление, состав и расход рабочей газовой смеси.

Температура процесса , площадь садки, участвующей в теплообмене и эффективность теплообмена со стенкой (количество экранов) определяют мощность, необходимую для поддержания разряда и обеспечивающую нужную температуру изделий. Выбор температуры зависит от степени легированности азотируемой стали нитридообразующими элементами: чем выше степень легированности, тем выше температура.

Температура обработки должна быть как минимум на 10-20 0 С ниже температуры отпуска.

Длительность и температура процесса насыщения определяют глубину слоя, распределение твердости по глубине и толщину нитридной зоны.

Состав насыщающей среды зависит от степени легирования обрабатываемой стали и требований к твердости и глубине азотированного слоя.

Давление процесса должно быть таким, чтобы обеспечивалось плотное «облегание» разрядом поверхности изделий и получение равномерного азотированного слоя. Однако, при этом следует иметь в виду, что разряд на всех стадиях процесса должен быть аномальным, т. е. поверхность всех деталей в садке полностью должна быть покрыта свечением, а плотность разрядного тока должна быть больше нормальной плотности для данного давления с учетом эффекта нагрева газа в катодной области разряда.

С появлением установок ИПА нового поколения, использующих в качестве рабочей среды регулируемые по составу смеси водорода, азота и аргона, а так же плазму «пульсирующего», а не постоянного тока, технологичность процесса ионного азотирования существенно возросла.

Использование комбинированного нагрева («горячие» стенки камеры) либо усиленной тепловой защиты (тройной теплозащитный экран) наряду с возможностью независимо регулировать состав газа и давление в камере позволяют при обработке режущего инструмента избежать перегрева тонких режущих кромок в процессе разогрева садки, точно регулировать время насыщения а, соответственно, и глубину слоя, т.к. разогрев изделий возможно производить в безазотной среде, например, в смеси Ar+H 2 .

Эффективная теплоизоляция в рабочей камере (тройной теплозащитный экран) позволяет обрабатывать изделия с низким удельным энергопотреблением, что позволяет свести к минимуму температурные различия внутри садки во время обработки. Об этом свидетельствует распределение микротвердости по глубине азотированного слоя для образцов, располагавшихся в разных местах садки (рис. 2).


Рис. 2.

а, в - шестерня массой 10,1 кг, 51 шт., ст - 40Х, модуль 4,5, выдержка 16 часов, Т= 530 0 С;

б, г - шестерня массой 45 кг, 11 шт., ст - 38ХН3МФА, модуль 3,25 (наружный венец) и 7 мм (внутренний венец), выдержка 16 часов, Т=555 0 С.

Ионное азотирование - эффективный метод упрочняющей обработки деталей из легированных конструкционных сталей : шестерен, зубчатых венцов, вал-зубчатых шестерен, валов, прямозубых, конических и цилиндрических шестерен, муфт, валов-шестерен сложной геометрической конфигурации и др.

Цементация, нитроцементация и ТВЧ-закалка оправдывают себя при изготовлении тяжелонагруженных деталей (зубчатые колеса, оси, валы и др.) низкой и средней точности, не требующих последующей шлифовки.

Указанные виды термообработки экономически нецелесообразны при изготовлении средне- и низконагруженных высокоточных деталей, т.к. при данной обработке наблюдается значительное коробление и требуется последующая шлифовка. Соответственно, при шлифовке необходимо снимать значительную толщину упрочненного слоя.

ИПА позволяет существенно снизить коробление и деформацию деталей при сохранении шероховатости поверхности в пределах Ra=0,63…1,2 мкм, что позволяет в подавляющем большинстве случаев использовать ИПА как финишную обработку.

Применительно к станкостроению, ионное азотирование зубчатых колес в существенной мере снижает шумовые характеристики станков, тем самым, повышая их конкурентоспособность на рынке.

ИПА наиболее эффективно при обработке крупносерийных однотипных деталей: шестерен, валов, осей, зубчатых валов, вал-зубчатых шестерен и др. Шестерни, подвергнутые плазменному азотированию, имеют лучшую стабильность размеров по сравнению с цементованными шестернями и могут использоваться без дополнительной обработки. При этом несущая способность боковой поверхности и прочность основания зуба, достигаемые с помощью плазменного азотирования, соответствуют цементованным шестерням (таб. 1).

Таблица 1. Характеристики сопротивления усталости сталей в зависимости от способов упрочнения зубчатых колес

При упрочняющей обработке методом ионного азотирования деталей из цементуемых, низко- и среднелегированных сталей (18ХГТ, 20ХНЗА, 20ХГНМ, 25ХГТ, 40Х, 40ХН, 40ХФА и др.) необходимо в начале проводить улучшение поковок - объемную закалку и отпуск до твердости 241-285 НВ (для некоторых сталей - 269-302 НВ), затем механическую обработку и в завершение - ионное азотирование. Для обеспечения минимальной деформации изделий перед азотированием для снятия напряжений рекомендуется проводить отжиг в атмосфере защитного газа, причем температура отжига должна быть выше температуры азотирования. Отжиг следует проводить перед точной механической обработкой.

Глубина азотированного слоя, формируемого на указанных изделиях, изготовленных из сталей 40Х, 18ХГТ, 25ХГТ, 20Х2Н4А и др., составляет 0,3-0,5 мм при твердости 500-800 HV в зависимости от марки стали (рис 3).

Для передач, работающих в условиях более тяжелых нагрузок, азотированный слой должен быть на уровне 0,6-0,8 мм с тонкой нитридной зоной или вообще без нее.

Рис. 3.

Оптимизация свойств упрочненного слоя определяется совокупностью характеристик основного материала (твердость сердцевины) и параметрами азотированного слоя. Характер нагрузки определяет глубину диффузионного слоя, тип и толщину нитридного слоя:

  • · износ - "- или -слой;
  • · динамическая нагрузка - ограниченная толщина нитридного слоя или вообще без нитридного слоя;
  • · коррозия - -слой.

Независимое управление расходом каждого из компонентов газовой смеси, давлением в рабочей камере и вариация температурой процесса позволяют формировать слои различной глубины и твердости (рис. 4), обеспечивая тем самым стабильное качество обработки с минимальным разбросом свойств от детали к детали и от садки к садке (рис. 5).

Рис. 4.

  • 1, 3, 5 - одностадийный процесс;
  • 2,4 - двухстадийный процесс по содержанию N 2 в рабочей смеси
  • 1,2 - T=530 0 C, t=16 часов; 3 - T=560 0 C, t=16 часов;
  • 4 - T=555 0 C, t=15 часов, 5 - T = 460 0 С, t = 16 часов

Рис. 5.

Ионное азотирование широко известно и как один из эффективных методов повышения износостойкости режущего инструмента, изготовленного из быстрорежущих сталей марки Р6М5, Р18, Р6М5К5, Р12Ф4К5 и др.

Азотирование повышает износостойкость инструмента и его теплостойкость. Азотированная поверхность инструмента, обладающая пониженным коэффициентом трения и улучшенными антифрикционными свойствами, обеспечивает более легкий отвод стружки, а также предотвращает ее налипание на режущие кромки и образование лунок износа, что дает возможность увеличить подачу и скорость резания.

Оптимальной структурой азотированной быстрорежущей стали является высокоазотистый мартенсит, не содержащий избыточных нитридов. Указанная структура обеспечивается насыщением поверхности инструмента азотом при температуре 480-520 0 С в процессе кратковременного азотирования (до 1 часа). При этом формируется упрочненный слой глубиной 20-40 мкм с микротвердостью поверхности 1000-1200 HV0,5 при твердости сердцевины 800-900 HV (рис. 6) , а стойкость инструмента после ионного азотирования увеличивается в 2-8 раз в зависимости от его типа и вида обрабатываемого материала.

Рис. 6.

Главным достоинством ионного азотирования инструмента является возможность получения только диффузионного упрочненного слоя, либо слоя с монофазным нитридом Fe 4 N ("-фаза) на поверхности, в отличие от классического газового азотирования в аммиаке, где нитридный слой состоит из двух фаз - "+, что является источником внутренних напряжений на границе раздела фаз и вызывает хрупкость и отслаивание упрочненного слоя при эксплуатации.

Ионное азотирование является также одним из основных методов увеличения долговечности штампового инструмента и литьевой оснастки из сталей 5ХНМ, 4Х5МФС, 3Х2В8, 4Х5В2ФС, 4Х4ВМФС, 38Х2МЮА, Х12, Х12М, Х12Ф1.

В результате ионного азотирования можно улучшить следующие характеристики изделий:

  • · Ковочные штампы для горячей штамповки и пресс-формы для литья металлов и сплавов - повышается износостойкость, уменьшается прилипание металла.
  • · Пресс-формы для литья алюминия под давлением - азотированный слой препятствует прилипанию металла в зоне подачи жидкой струи, и процесс заполнения формы является менее турбулентным, что увеличивает срок службы пресс-форм, а отливка получается более высокого качества.

Существенно улучшает ионное азотирование и эксплуатационные характеристики инструмента для холодной (T < 250 0 С) обработки - вытяжка, гибка, штамповка, прессование, резка, чеканка и прошивка.

Основные требования, обеспечивающие высокую работоспособность такого инструмента - высокая прочность при сжатии, износостойкость и сопротивление холодной ударной нагрузке - достигаются в результате упрочняющей обработки методом ионного азотирования.

Если для инструмента используется высокохромистая сталь (12% хрома), то азотированный слой должен быть только диффузионным, если низколегированные стали - то дополнительно к диффузионному слою должен быть г-слой - твердый и пластичный.

Особенностью ионного азотирования высокохромистых сталей является то, что выбирая температуру процесса можно в широких пределах сохранять твердость сердцевины изделия, задаваемую предварительной термической обработкой (табл. 2).

Для получения износостойкого поверхностного слоя при сохранении вязкой сердцевины штампа необходимо проводить вначале закалку с отпуском на вторичную твердость, размерную обработку и затем ионное азотирование.

Для исключения или сведения к минимуму деформаций, возникающих при ионном азотировании штампового инструмента, перед окончательной механической обработкой рекомендуется проводить отжиг в среде инертного газа при температуре как минимум на 20 С ниже температуры отпуска.

При необходимости применяют полировку азотированных рабочих поверхностей.

Таблица 2. Характеристики легированных сталей после ионно-плазменного азотирования.

Марка стали

Твердость сердцевины, HRC

Температура процесса

Характеристики слоя

Тип реко-менду-емого слоя соеди-нений

Глубина, мм

Пов. тв-сть,HV 1

Толщина слоя соед.,мкм

Стали для горячей обработки

Стали для холодной обработки

Варьируя состав насыщающей среды, температуру процесса и его длительность можно формировать слои разной глубины и твердости (рис. 7,8).

пуансон массой 237 кг

пресс-форма массой 1060 кг.

Рис. 7. Примеры обработки штамповой оснастки (а, б) и распределение микротвердости по глубине азотированного слоя (в, г).

Таким образом, как показывает мировой опыт, применение технологии ионного азотирования для упрочняющей обработки изделий из конструкционных сталей, а так же режущего и штампового инструмента эта технология является эффективной и относительно легко реализуемой, особенно с применением плазмы пульсирующего тока.

Ионно-плазменное упрочнение Вакуумные ионно-плазменные методы упрочнения поверхностей деталей включают следующие процессы: генерацию (образование) корпускулярного потока вещества; его активизацию, ускорение и фокусировку; ; конденсацию и внедрение в поверхность деталей (подложек). Генерация: корпускулярного потока вещества возможна его испарением (сублимацией) и распылением. Испарение: переход конденсированной фазы в пар осуществляется в результате подводок тепловой энергии к испаряемому веществу. Твердые вещества обычно при нагревании расплавляются, а затем переходят в газообразное состояние. Некоторые вещества переходят в газообразное состояние минуя жидкую фазу. Такой процесс называется сублимацией. .

С помощью методов вакуумной ионно-плазменной технологии можно выполнить: 1) модифицирование поверхностных слоев: ионно-диффузионное насыщение; (ионное азотирование, науглероживание, борироване и др.); ионное (плазменное) травление (очистка); ионная имплантация (внедрение); отжиг в тлеющем разряде; ХТО в среде несамостоятельного разряда; 2) нанесение покрытий: полимеризация в тлеющем разряде; ионное осаждение (триодной распылительной системе, диодной распылительной системе, с использованием разряда в полом катоде); электродуговое испарение; ионно-кластерный метод; катодное распыление (на постоянном токе, высокочастотное); химическое осаждение в плазме тлеющего разряда.

Преимущества методов вакуумного ионно-плазменного упрочнения высокая адгезия покрытия к подложке; равномерность покрытия по толщине на большой площади; варьирование состава покрытия в широком диапазоне, в пределах одного технологического цикла; получение высокой чистоты поверхности покрытия; экологическая чистота производственного цикла.

Ионное распыление Ионные распылители разделяют на две группы: плазмоионные, в которых мишень находится в газоразрядной плазме, создаваемой с помощью тлеющего, дугового и высокочастотного разряда. Распыление происходит в результате бомбардировки мишени ионами, извлекаемыми из плазмы; автономные источники без фокусировки и с фокусировкой ионных пучков, бомбардирующих мишень.

Принципиальная система распыления 1 — камера; 2 — подложкодержатель; 3 — детали (подложки); 4 — мишень; 5 — катод; 6 — экран; 7 — подвод рабочего газа; 8 — источник питания; 9 — откачка.

ХТО в среде тлеющего разряда Диффузионные установки с тлеющим разрядом используются для проведения процессов азотирования, цементации, силицирования и других видов ХТО из газовой фазы. Глубина диффузионного слоя достигает нескольких миллиметров при равномерном насыщении всей по верхности изделия. Процесс ведется при пониженном давлении, равном 10 -1 – 10 -3 Па, что обеспечивает существование тлеющего разряда. Преимущества применения тлеющего разряда: высокий коэффициент использования электроэнергии (расход только на ионизацию газа и нагрев детали); уменьшение длительности процесса, за счет быстрого нагрева до температуры насыщения; увеличения активности газовой среды и поверхностного слоя; возможность получения покрытий из тугоплавких металлов, сплавов и химических соединений. Недостатки процесса: низкое давление в камере (10 -1 Па), малая производительность, работа в периодическом режиме, невозможность обработки длинномерных изделий (например, труб), значительный расход электроэнергии высокая стоимость установок.

Ионно-диффузионное насыщение Преимущества перед процессом обычного газового азотирования: сокращение длительности цикла в 3 -5 раз; уменьшение деформации деталей в 3 -5 раз; возможность проведения регулируемых процессов азотирования с получением слоев с заданным составом и структурой; возможность уменьшения температуры процесса азотирования до 350 -400 0 С, что позволяет избежать разупрочнения материалы сердцевины изделий; уменьшение хрупкости слоя и повышение его служебных характеристик; простота защиты отдельных участков деталей от азотирования; устранение опасности взрыва печи; снижение удельных расходов электрической энергии в 1, 5 -2 раза и рабочего газа в 30 -50 раз; улучшения условий труда термистов. Недостатки: невозможность ускорения процесса путем увеличения плотности ионного потока, т. к. в результате перегрева деталей снижается поверхностная твердость; интенсификация процесса ионного азотирования; наложение магнитного поля с целью увеличения плотности тока и снижения давления газа; за счет создания поверхности детали заданной дефектности (предварительное пластическое деформирование, термическая обработка).

Установка ионной цементации ЭВТ

Ионная цементация При ионной цементации в граничном слое создается высокий градиент концентрации углерода. Скорость роста науглероженного слоя материала составляет 0, 4… 0, 6 мм/ч, что в 3… 5 раз превышает этот показатель для других способов цементации. Продолжительность ионной цементации для получения слоя толщиной 1… 1, 2 мм сокращается до 2… 3 часов. Вследствие низкого расхода газов, электроэнергии и непродолжительного времени обработки производственные затраты снижаются в 4… 5 раз. К технологическим преимуществам ионной цементации следует отнести высокую равномерность науглероживания, отсутствие внешнего и внутреннего окисления, уменьшение коробления деталей. Объем механической обработки сокращается на 30 %, число технологических операций уменьшается на 40 %, продолжительность цикла обработки сокращается на 50 %.

Ионно-плазменное азотирование (ИПА) ИПА– разновидность химико-термической обработки деталей машин, инструмента, штамповой и литьевой оснастки, обеспечивающая диффузионное насыщение поверхностного слоя стали (чугуна) азотом или азотом и углеродом в азотно–водородной плазме при температуре 450 – 600 °С, а также титана или титановых сплавов при температуре 800 – 950 °С в азотной плазме. Сущность ионно-плазменного азотирования заключается в том, что в разряженной до 200– 1000 Па азотсодержащей газовой среде между катодом, на котором располагаются обрабатываемые детали, и анодом, роль которого выполняют стенки вакуумной камеры, возбуждается аномальный тлеющий разряд, образующий активную среду (ионы, атомы, возбужденные молекулы). Это обеспечивает формирование на поверхности изделия азотированного слоя, состоящего из внешней – нитридной зоны с располагающейся под ней диффузионной зоной.

Микроструктура азотированного слоя инструментальной стали 4 Х 5 МФС а б Микроструктуры сталей У 8 (а) и 20 Х 13 (б) после ионно-плазменного азотирования

Установка УА-63 -950/3400 с изменяемой геометрией рабочей камеры (высота 1, 7 или 3, 4 м)

Применение метода ионно-плазменного азотирования данным методом обрабатываются следующие изделия: форсунки для легковых автомобилей, несущие пластины автоматического привода, матрицы, пуансоны, штампы, пресс-формы (Daimler Chrysler); пружины для системы впрыска (Opel); коленчатые валы (Audi); распределительные (кулачковые) валы (Volkswagen); коленчатые валы для компрессора (Atlas, США и Wabco, Германия); шестерни для BMW (Handl, Германия); автобусные шестерни (Voith); упрочнения прессового инструмента в производстве алюминиевых изделий (Нугховенс, Скандекс, Джон Девис и др.). Есть положительный опыт промышленного использования данного метода странами СНГ: Беларусь – МЗКТ, МАЗ, Бел. АЗ; Россия – Авто. ВАЗ, Кам. АЗ, ММПП «Салют» , Уфимское моторостроительное объединение (УМПО). Методом ИПА обрабатываются: шестерни (МЗКТ); шестерни и другие детали (МАЗ); шестерни большого (более 800 мм) диаметра (Бел. АЗ); впускные и выпускные клапаны (Авто. ВАЗ); коленчатые валы (Кам. АЗ).

Металлизация изделий по типу 1 производится в декоративных целях, для повышения твёрдости и износостойкости, для защиты от коррозии. Из-за слабого сцепления покрытия с подложкой этот вид металлизации нецелесообразно применять для деталей, работающих в условиях больших нагрузок и температур. Технология металлизации по типам 1 и 2 а предусматривает наложение слоя вещества на поверхность холодного или нагретого до относительно невысоких температур изделия. К этим видам металлизации относятся: электролитические (гальванотехника); химические; газопламенные процессы получения покрытий (напыление); нанесение покрытий плакированием (механо-термический); диффузионный, погружением в расплавленные металлы. Технология металлизация по типу 2 б предусматривает диффузионное насыщение металлическими элементами поверхности деталей, нагретых до высоких температур, в результате которого в зоне диффузии элемента образуется сплав (Диффузионная металлизация). В этом случае геометрия и размеры металлизируемой детали практически не меняются.

Ионно-плазменная металлизация Ионно-плазменная металлизация имеет ряд существенных преимуществ по сравнению с другими видами металлизации. Высокая температура плазмы и нейтральная среда позволяют получать покрытия с большей структурной однородностью, меньшей окисляемостью, более высокими когезионными и адгезионными свойствами, износостойкостью и др. по сравнению с этими свойствами других видов металлизации. С помощью этого метода металлизации можно распылять различные тугоплавкие материалы: вольфрам, молибден, титан и др. , твердые сплавы, а также окислы алюминия, хрома, магния и др. Нанесение покрытия можно осуществлять распылением как проволоки, так и порошка. Собственно металлизация состоит из трех процессов: плавления твердого металла проволоки или порошка (при ионно-плазменной металлизации), распыления расплавленного металла и формирования покрытия. Материалами для напыления могут быть любые тугоплавкие металлы в виде проволоки или порошка, но могут использоваться и среднеутлеродистые к легированные проволоки типа Нп-40, Нп-ЗОХГСА, Нп-ЗХ 13 и др. В условиях авторемонтных предприятий в качестве тугоплавких материалов может применяться сплав типа ВЗК (стеллит) или сормайт, обладающий высокими износостойкостью и коррозионной стойкостью.

Privacy Policy

Effective date: October 22, 2018

Ionitech Ltd. ("us", "we", or "our") operates the https://www..

This page informs you of our policies regarding the collection, use, and disclosure of personal data when you use our Service and the choices you have associated with that data.

We use your data to provide and improve the Service. By using the Service, you agree to the collection and use of information in accordance with this policy. Unless otherwise defined in this Privacy Policy, terms used in this Privacy Policy have the same meanings as in our Terms and Conditions, accessible from https://www.сайт/

Information Collection And Use

We collect several different types of information for various purposes to provide and improve our Service to you.

Types of Data Collected

Personal Data

While using our Service, we may ask you to provide us with certain personally identifiable information that can be used to contact or identify you ("Personal Data"). Personally identifiable information may include, but is not limited to:

  • Cookies and Usage Data

Usage Data

We may also collect information how the Service is accessed and used ("Usage Data"). This Usage Data may include information such as your computer"s Internet Protocol address (e.g. IP address), browser type, browser version, the pages of our Service that you visit, the time and date of your visit, the time spent on those pages, unique device identifiers and other diagnostic data.

Tracking & Cookies Data

We use cookies and similar tracking technologies to track the activity on our Service and hold certain information.

Cookies are files with small amount of data which may include an anonymous unique identifier. Cookies are sent to your browser from a website and stored on your device. Tracking technologies also used are beacons, tags, and scripts to collect and track information and to improve and analyze our Service.

You can instruct your browser to refuse all cookies or to indicate when a cookie is being sent. However, if you do not accept cookies, you may not be able to use some portions of our Service.

Examples of Cookies we use:

  • Session Cookies. We use Session Cookies to operate our Service.
  • Preference Cookies. We use Preference Cookies to remember your preferences and various settings.
  • Security Cookies. We use Security Cookies for security purposes.

Use of Data

Ionitech Ltd. uses the collected data for various purposes:

  • To provide and maintain the Service
  • To notify you about changes to our Service
  • To allow you to participate in interactive features of our Service when you choose to do so
  • To provide customer care and support
  • To provide analysis or valuable information so that we can improve the Service
  • To monitor the usage of the Service
  • To detect, prevent and address technical issues

Transfer Of Data

Your information, including Personal Data, may be transferred to - and maintained on - computers located outside of your state, province, country or other governmental jurisdiction where the data protection laws may differ than those from your jurisdiction.

If you are located outside Bulgaria and choose to provide information to us, please note that we transfer the data, including Personal Data, to Bulgaria and process it there.

Your consent to this Privacy Policy followed by your submission of such information represents your agreement to that transfer.

Ionitech Ltd. will take all steps reasonably necessary to ensure that your data is treated securely and in accordance with this Privacy Policy and no transfer of your Personal Data will take place to an organization or a country unless there are adequate controls in place including the security of your data and other personal information.

Disclosure Of Data

Legal Requirements

Ionitech Ltd. may disclose your Personal Data in the good faith belief that such action is necessary to:

  • To comply with a legal obligation
  • To protect and defend the rights or property of Ionitech Ltd.
  • To prevent or investigate possible wrongdoing in connection with the Service
  • To protect the personal safety of users of the Service or the public
  • To protect against legal liability

Security Of Data

The security of your data is important to us, but remember that no method of transmission over the Internet, or method of electronic storage is 100% secure. While we strive to use commercially acceptable means to protect your Personal Data, we cannot guarantee its absolute security.

Service Providers

We may employ third party companies and individuals to facilitate our Service ("Service Providers"), to provide the Service on our behalf, to perform Service-related services or to assist us in analyzing how our Service is used.

These third parties have access to your Personal Data only to perform these tasks on our behalf and are obligated not to disclose or use it for any other purpose.

Analytics

We may use third-party Service Providers to monitor and analyze the use of our Service.

    Google Analytics

    Google Analytics is a web analytics service offered by Google that tracks and reports website traffic. Google uses the data collected to track and monitor the use of our Service. This data is shared with other Google services. Google may use the collected data to contextualize and personalize the ads of its own advertising network.

    You can opt-out of having made your activity on the Service available to Google Analytics by installing the Google Analytics opt-out browser add-on. The add-on prevents the Google Analytics JavaScript (ga.js, analytics.js, and dc.js) from sharing information with Google Analytics about visits activity.

    For more information on the privacy practices of Google, please visit the Google Privacy & Terms web page: https://policies.google.com/privacy?hl=en

Links To Other Sites

Our Service may contain links to other sites that are not operated by us. If you click on a third party link, you will be directed to that third party"s site. We strongly advise you to review the Privacy Policy of every site you visit.

We have no control over and assume no responsibility for the content, privacy policies or practices of any third party sites or services.

Children"s Privacy

Our Service does not address anyone under the age of 18 ("Children").

We do not knowingly collect personally identifiable information from anyone under the age of 18. If you are a parent or guardian and you are aware that your Children has provided us with Personal Data, please contact us. If we become aware that we have collected Personal Data from children without verification of parental consent, we take steps to remove that information from our servers.

Changes To This Privacy Policy

We may update our Privacy Policy from time to time. We will notify you of any changes by posting the new Privacy Policy on this page.

We will let you know via email and/or a prominent notice on our Service, prior to the change becoming effective and update the "effective date" at the top of this Privacy Policy.

You are advised to review this Privacy Policy periodically for any changes. Changes to this Privacy Policy are effective when they are posted on this page.

Contact Us

If you have any questions about this Privacy Policy, please contact us:

  • By email:
Главная > Документ

Технологические возможности ионного азотирования в упрочнении изделий из конструкционных и инструментальных сталей

М. Н. Босяков, С. В. Бондаренко, Д.В.Жук, П.А.Матусевич

СП «Авиценна Интернешнл », Республика Беларусь, г. Минск,

Ул. Сурганова, 2а, 220012, тел. +375 17 2355002

Ионно-плазменное азотирование (ИПА) – метод химико-термической обработки изделий из стали и чугуна с большими технологическими возможностями, позволяющий получать диффузионные слои нужного состава путем использования разных газовых сред, т.е. процесс диффузионного насыщения управляем и может быть оптимизирован в зависимости от конкретных требований к глубине слоя и твердости поверхности. Температурный диапазон ионного азотирования шире, чем газового и находится в пределах 400-600 0 С. Обработка при температурах ниже 500 0 С особенно эффективна при упрочнении изделий из инструментальных легированных сталей для холодной обработки, быстрорежущих и мартенситно-стареющих сталей, т.к. значительно повышаются их эксплуатационные свойства при сохранении твердости сердцевины на уровне 55-60 HRC. Упрочняющей обработке методом ИПА подвергаются детали и инструменты практически всех отраслей промышленности (рис.1).

Рис. 1. Применение ионно-плазменного азотирования для упрочнения различных изделий

В результате ИПА можно улучшить следующие характеристики изделий: износостойкость, усталостную выносливость, антизадирные свойства, теплостойкость и коррозионную стойкость. В сравнении с широко используемыми способами упрочняющей химико-термической обработки стальных деталей, такими, как цементация, нитроцементация, цианирование и газовое азотирование в печах, метод ИПА имеет следующие основные преимущества:

    более высокая поверхностная твердость азотированных деталей; отсутствие деформации деталей после обработки и высокая чистота поверхности; повышение предела выносливости и увеличение износостойкости обработанных деталей; более низкая температура обработки, благодаря чему, в стали не происходит структурных превращений; возможность обработки глухих и сквозных отверстий; сохранение твердости азотированного слоя после нагрева до 600-650 С; возможность получения слоев заданного состава; возможность обработки изделий неограниченных размеров и форм; отсутствие загрязнения окружающей среды; повышение культуры производства; снижение себестоимости обработки в несколько раз.
Преимущества ИПА проявляются и в существенном сокращении основных издержек производства. Так, например, по сравнению с газовым азотированием в печах, ИПА обеспечивает:
    сокращение продолжительности обработки в 2–5 раз, как за счет снижения времени нагрева и охлаждения садки, так и за счет уменьшения времени изотермической выдержки; снижение хрупкости упрочненного слоя; сокращение расхода рабочих газов в 20–100 раз; сокращение расхода электроэнергии 1,5-3 раза; исключение операции депассивации; снижение деформации настолько, чтобы исключить финишную шлифовку; простота и надежность экранной защиты от азотирования неупрочняемых поверхностей; улучшение санитарно-гигиенических условий производства; полное соответствие технологии всем современным требованиям по охране окружающей среды.
По сравнению с закалкой обработка методом ИПА позволяет :
    исключить деформации; увеличить ресурс работы азотированной поверхности в 2-5 раз.
Применение ИПА вместо цементации, нитроцементации, газового или жидкостного азотирования, объемной или ТВЧ закалки позволяет сэкономить основное оборудование и производственные площади, снизить станочные и транспортные затраты, уменьшить расход электроэнергии и активных газовых сред. Принцип действия ИПА заключается в том, что в разряженной (р =200-1000 Па) азотсодержащей газовой среде между катодом – деталями – и анодом – стенками вакуумной камеры – возбуждается аномальный тлеющий разряд, образующий активную среду (ионы, атомы, возбужденные молекулы), обеспечивающую формирование азотированного слоя, состоящего из внешней – нитридной зоны и располагающейся под ней диффузионной зоны. Технологическими факторами, влияющими на эффективность ионного азотирования, являются температура процесса, продолжительность насыщения, давление, состав и расход рабочей газовой смеси. Температура процесса , площадь садки, участвующей в теплообмене и эффективность теплообмена со стенкой (количество экранов) определяют мощность, необходимую для поддержания разряда и обеспечивающую нужную температуру изделий.Выбор температуры зависит от степени легированности азотируемой стали нитридообразующими элементами: чем выше степень легированности, тем выше температура. Температура обработки должна быть как минимум на 10-20 0 С ниже температуры отпуска. Длительность и температура процесса насыщения определяют глубину слоя, распределение твердости по глубине и толщину нитридной зоны. Состав насыщающей среды зависит от степени легирования обрабатываемой стали и требований к твердости и глубине азотированного слоя. Давление процесса должно быть таким, чтобы обеспечивалось плотное «облегание» разрядом поверхности изделий и получение равномерного азотированного слоя. Однако, при этом следует иметь в виду, что разряд на всех стадиях процесса должен быть аномальным, т. е. поверхность всех деталей в садке полностью должна быть покрыта свечением, а плотность разрядного тока должна быть больше нормальной плотности для данного давления с учетом эффекта нагрева газа в катодной области разряда. С появлением установок ИПА нового поколения, использующих в качестве рабочей среды регулируемые по составу смеси водорода, азота и аргона, а так же плазму «пульсирующего», а не постоянного тока, технологичность процесса ионного азотирования существенно возросла. Использование комбинированного нагрева («горячие» стенки камеры) либо усиленной тепловой защиты (тройной теплозащитный экран) наряду с возможностью независимо регулировать состав газа и давление в камере позволяют при обработке режущего инструмента избежать перегрева тонких режущих кромок в процессе разогрева садки, точно регулировать время насыщения а, соответственно, и глубину слоя, т.к. разогрев изделий возможно производить в безазотной среде, например, в смеси Ar+H 2 . Эффективная теплоизоляция в рабочей камере (тройной теплозащитный экран) позволяет обрабатывать изделия с низким удельным энергопотреблением, что позволяет свести к минимуму температурные различия внутри садки во время обработки. Об этом свидетельствует распределение микротвердости по глубине азотированного слоя для образцов, располагавшихся в разных местах садки (рис. 2).

Рис. 2. Распределение микротвердости по глубине азотированного слоя для трех образцов располагавшихся в разных местах садки.

а, в – шестерня массой 10,1 кг, 51 шт., ст – 40Х, модуль 4,5, выдержка 16 часов, Т= 530 0 С;

б, г – шестерня массой 45 кг, 11 шт., ст – 38ХН3МФА, модуль 3,25 (наружный венец)

и 7 мм (внутренний венец), выдержка 16 часов, Т=555 0 С.

Ионное азотирование – эффективный метод упрочняющей обработки деталей из легированных конструкционных сталей : шестерен, зубчатых венцов, вал-зубчатых шестерен, валов, прямозубых, конических и цилиндрических шестерен, муфт, валов-шестерен сложной геометрической конфигурации и др. Цементация, нитроцементация и ТВЧ-закалка оправдывают себя при изготовлении тяжелонагруженных деталей (зубчатые колеса, оси, валы и др.) низкой и средней точности, не требующих последующей шлифовки. Указанные виды термообработки экономически нецелесообразны при изготовлении средне- и низконагруженных высокоточных деталей, т.к. при данной обработке наблюдается значительное коробление и требуется последующая шлифовка. Соответственно, при шлифовке необходимо снимать значительную толщину упрочненного слоя. ИПА позволяет существенно снизить коробление и деформацию деталей при сохранении шероховатости поверхности в пределах Ra=0,63…1,2 мкм, что позволяет в подавляющем большинстве случаев использовать ИПА как финишную обработку. Применительно к станкостроению, ионное азотирование зубчатых колес в существенной мере снижает шумовые характеристики станков, тем самым, повышая их конкурентоспособность на рынке. ИПА наиболее эффективно при обработке крупносерийных однотипных деталей: шестерен, валов, осей, зубчатых валов, вал-зубчатых шестерен и др. Шестерни, подвергнутые плазменному азотированию, имеют лучшую стабильность размеров по сравнению с цементованными шестернями и могут использоваться без дополнительной обработки. При этом несущая способность боковой поверхности и прочность основания зуба, достигаемые с помощью плазменного азотирования, соответствуют цементованным шестерням (таб. 1).

Таблица 1

Характеристики сопротивления усталости сталей в зависимости от способов упрочнения зубчатых колес

Тип стали

Вид обработки

Предел выносливости при изгибе, МПа

Предел контактной выносливости поверхности, МПа

Твердость боковой поверхности зубъев, HV

Легированные

Упрочнение

Улучшаемые (40Х, 40ХН, 40ХФА, 40ХН2МА, 40ХМФА, 38ХМ, 38ХН3МФА, 38Х2Н2МФА, 30Х2НМ и др.)

Азотирование

Нормализованные

Плазменная или индукционная закалка

Специальные азотируемые

(38ХМЮА, 38Х2МЮА, 35ХЮА, 38ХВФЮА, 30Х3МФ и др.)

Азотирование

Легированные

Цементация и нитроцементация

При упрочняющей обработке методом ионного азотирования деталей из цементуемых, низко- и среднелегированных сталей (18ХГТ, 20ХНЗА, 20ХГНМ, 25ХГТ, 40Х, 40ХН, 40ХФА и др.) необходимо в начале проводить улучшение поковок – объемную закалку и отпуск до твердости 241-285 НВ (для некоторых сталей – 269-302 НВ), затем механическую обработку и в завершение – ионное азотирование. Для обеспечения минимальной деформации изделий перед азотированием для снятия напряжений рекомендуется проводить отжиг в атмосфере защитного газа, причем температура отжига должна быть выше температуры азотирования. Отжиг следует проводить перед точной механической обработкой. Глубина азотированного слоя, формируемого на указанных изделиях, изготовленных из сталей 40Х, 18ХГТ, 25ХГТ, 20Х2Н4А и др., составляет 0,3-0,5 мм при твердости 500-800 HV в зависимости от марки стали (рис 3). Для передач, работающих в условиях более тяжелых нагрузок, азотированный слой должен быть на уровне 0,6-0,8 мм с тонкой нитридной зоной или вообще без нее.

Рис. 3. Распределение микротвердости по глубине азотированного слоя для разных сталей

Оптимизация свойств упрочненного слоя определяется совокупностью характеристик основного материала (твердость сердцевины) и параметрами азотированного слоя. Характер нагрузки определяет глубину диффузионного слоя, тип и толщину нитридного слоя:

    износ – g’- или e-слой; динамическая нагрузка – ограниченная толщина нитридного слоя или вообще без нитридного слоя; коррозия – e-слой.
Независимое управление расходом каждого из компонентов газовой смеси, давлением в рабочей камере и вариация температурой процесса позволяют формировать слои различной глубины и твердости (рис. 4), обеспечивая тем самым стабильное качество обработки с минимальным разбросом свойств от детали к детали и от садки к садке (рис. 5).

Рис. 4. Распределение микротвердости по глубине азотированного слоя стали 40Х

1, 3, 5 – одностадийный процесс;

2,4 – двухстадийный процесс по содержанию N 2 в рабочей смеси

1,2 – T =530 0 C , t =16 часов; 3 – T =560 0 C , t =16 часов;

4 – T =555 0 C , t =15 часов, 5 – T = 460 0 С, t = 16 часов

Рис. 5. Разброс микротвердости по глубине азотированного слоя

для стали 40Х (а) и 38ХНЗМФА (б) для серийных процессов.

Ионное азотирование широко известно и как один из эффективных методов повышения износостойкости режущего инструмента, изготовленного из быстрорежущих сталей марки Р6М5, Р18, Р6М5К5, Р12Ф4К5 и др. Азотирование повышает износостойкость инструмента и его теплостойкость. Азотированная поверхность инструмента, обладающая пониженным коэффициентом трения и улучшенными антифрикционными свойствами, обеспечивает более легкий отвод стружки, а также предотвращает ее налипание на режущие кромки и образование лунок износа, что дает возможность увеличить подачу и скорость резания. Оптимальной структурой азотированной быстрорежущей стали является высокоазотистый мартенсит, не содержащий избыточных нитридов. Указанная структура обеспечивается насыщением поверхности инструмента азотом при температуре 480-520 0 С в процессе кратковременного азотирования (до 1 часа). При этом формируется упрочненный слой глубиной 20-40 мкм с микротвердостью поверхности 1000-1200 HV0,5 при твердости сердцевины 800-900 HV (рис. 6) , а стойкость инструмента после ионного азотирования увеличивается в 2–8 раз в зависимости от его типа и вида обрабатываемого материала.

Рис. 6. Структура азотированного слоя стали Р6М5 (а) и распределение микротвердости по глубине слоя (б).

Главным достоинством ионного азотирования инструмента является возможность получения только диффузионного упрочненного слоя, либо слоя с монофазным нитридом Fe 4 N (’-фаза) на поверхности, в отличие от классического газового азотирования в аммиаке, где нитридный слой состоит из двух фаз - ’+, что является источником внутренних напряжений на границе раздела фаз и вызывает хрупкость и отслаивание упрочненного слоя при эксплуатации. Ионное азотирование является также одним из основных методов увеличения долговечности штампового инструмента и литьевой оснастки из сталей 5ХНМ, 4Х5МФС, 3Х2В8, 4Х5В2ФС, 4Х4ВМФС, 38Х2МЮА, Х12, Х12М, Х12Ф1. В результате ионного азотирования можно улучшить следующие характеристики изделий:

    Ковочные штампы для горячей штамповки и пресс-формы для литья металлов и сплавов – повышается износостойкость, уменьшается прилипание металла. Пресс-формы для литья алюминия под давлением – азотированный слой препятствует прилипанию металла в зоне подачи жидкой струи, и процесс заполнения формы является менее турбулентным, что увеличивает срок службы пресс-форм, а отливка получается более высокого качества.
Существенно улучшает ионное азотирование и эксплуатационные характеристики инструмента для холодной (T < 250 0 С) обработки – вытяжка, гибка, штамповка, прессование, резка, чеканка и прошивка. Основные требования, обеспечивающие высокую работоспособность такого инструмента – высокая прочность при сжатии, износостойкость и сопротивление холодной ударной нагрузке – достигаются в результате упрочняющей обработки методом ионного азотирования. Если для инструмента используется высокохромистая сталь (12% хрома), то азотированный слой должен быть только диффузионным, если низколегированные стали – то дополнительно к диффузионному слою должен быть γ-слой – твердый и пластичный. Особенностью ионного азотирования высокохромистых сталей является то, что выбирая температуру процесса можно в широких пределах сохранять твердость сердцевины изделия, задаваемую предварительной термической обработкой (табл. 2). Для получения износостойкого поверхностного слоя при сохранении вязкой сердцевины штампа необходимо проводить вначале закалку с отпуском на вторичную твердость, размерную обработку и затем ионное азотирование. Для исключения или сведения к минимуму деформаций, возникающих при ионном азотировании штампового инструмента, перед окончательной механической обработкой рекомендуется проводить отжиг в среде инертного газа при температуре как минимум на 20 С ниже температуры отпуска. При необходимости применяют полировку азотированных рабочих поверхностей.

Таблица 2.

Характеристики легированных сталей после ионно-плазменного азотирования.

Марка стали

Твердость сердц е вины,

Температура процесса

0 С

Характеристики слоя

Тип реко-менду-емого слоя соеди-нений

Глубина, мм

тв-сть,

HV 1

Толщина слоя соед.,

Стали для горячей обработки

Стали для холодной обработки

Рекомендуем почитать

Наверх