Магнито абразивная обработка. Магнитно-абразивное полирование

Управление 18.06.2020
Управление

По ГОСТ 3675-56 кинематической погрешностью называют наибольшую погрешность углового поворота червячного колеса в пределах одного оборота. Циклическая погрешность является составляющей кинематической погрешности, она периодически повторяется за один оборот червячного колеса. Кинематическая погрешность является следствием неточности элементов червяка и червячного колеса, а циклическая – только неточности элементов червяка. Оба эти вида погрешностей, наряду с ошибками взаимного положения червяка и червячного колеса, служат причиной «действующей погрешности» , выражающейся в пульсации окружной скорости червячного колеса. При этом могут возникать динамические нагрузки, сопоставимые с полезной. Чтобы свести действующую погрешность до минимума, а она, в отличие от пятна контакта, со временем не смягчается, необходимо соблюдать точность профиля и постоянство параметров червяка, чего на данном этапе технического развития можно добиться на операциях финишной обработки.

3.4 Основные существующие и прогрессивные методы финишной обработки сложнопрофильных поверхностей

Традиционные методы шлифования.

1. Обработка плоской стороной шлифовального круга, также дисковым шлифовальным кругом с заправленными на конус сторонами и чашечным конусным кругом подобно шлифованию зубьев эвольвентного зубчатого колеса. Этот метод применим только к эвольвентным червякам.

2. Шлифование специально профилированным по кривой шлифовальным кругом. Применим для шлифования всех видов червяков. Основные недостатки: низкая точность, сложность изготовления круга, низкая его стойкость и необходимость периодической правки правящим инструментом.

3. Метод, основанный на использовании эластичной связки или свободного (незакрепленного) абразива. Применение ограничено из-за невозможности обеспечить равномерное удаление строго контролируемого слоя металла со всей обрабатываемой поверхности.

4. Способ ручного полирования. Выполняется вручную с помощью абразивных паст, инструмента на гибкой связке и др. этот метод очень трудоемок, малопроизводителен, а качество обработанной поверхности зависит от субъективных данных исполнителя. К тому же при данном методе невозможно использовать стабильные режимы обработки: скорость резания, подачи, давление на обрабатываемую поверхность, глубину резания и др.

Прогрессивный метод финишной обработки – магнито-абразивное полирование.

Для финишной обработки изделий со сложным профилем традиционные методы с использованием жесткого абразивного инструмента нецелесообразны, особенно в мелкосерийном производстве, т.к. они требуют применения фасонных шлифовальных кругов, процесс восстановления профиля которых очень трудоемок. Использовать эластичную связку или свободный абразив во многих случаях невозможно, т.к. в этом случае происходит неконтролируемый, неравномерный съем металла со всей поверхности вращения с криволинейной образующей.

Основываясь на работах Шулева Г.С., Барона Ю.М., Хомича Н.С., Ящерицына П.И., Коновалова Е.Г., Чачина В.Н., Минина Л.К., Кравченко Л.Н., Скворчевского Н.Я., Косуро Ю.С., Забавского М.Т., Кожуро Л.М., Акуловича Л.М. был разработан метод финишной магнито-абразивной обработки, основанный на энергии магнитного поля в качестве связки магнитно-абразивного порошка.

Сущность магнито-абразивной обработки винтовых поверхностей заключается в следующем. Червяк или винт вводится в зацепление с наконечниками. В зазор между ними подается ферромагнитный абразивный порошок, обладающий магнитными и абразивными свойствами. Механическим приводом винту сообщается вращательное движение. Под воздействием магнитного поля плотность порошка увеличивается. Винтовая поверхность при этом контактирует только с зернами порошка, которые под воздействием магнитного поля приобретают форму зуба колеса. Функцию упругой связки выполняет энергия постоянного магнитного поля. Степень упругости связки можно регулировать изменением напряженности магнитного поля, что дает возможность контролировать съём металла и шероховатость обработанной поверхности согласно литературе. Момент сопротивления червячному колесу придается при помощи динамометрического устройства.

Магнитно-абразивная обработка (МАО) (англ. magnetic-abrasive machining, нем. Magnetschleifbearbeitung) - абразивная обработка, осуществляемая при движении заготовки и абразивных зерен относительно друг друга в магнитном поле (согласно ГОСТ 23505-79 «Обработка абразивная. Термины и определения»).

Сущность магнитно-абразивной обработки заключается в том, что порошковая ферромагнитная абразивная масса, уплотненная энергией магнитного поля , осуществляет абразивное воздействие на обрабатываемую деталь.

Магнитно-абразивным способом можно успешно обрабатывать поверхности: цилиндрические наружные и внутренние, плоские, тел вращения с криволинейной образующей, винтовые и др.

Наиболее распространенной областью применения магнитно-абразивной обработки является снижение шероховатости на обрабатываемых поверхностях с одновременным повышением качественных характеристик поверхностного слоя.

История развития технологии МАО

Идея использования энергии магнитного поля для механической обработки деталей принадлежит Н. И. Каргалову , который в 1938 г. предложил способ обработки внутренних поверхностей труб абразивным порошком, обладающим ферромагнитными свойствами.

В 1956-1959 гг. был зарегистрирован ряд патентов в США, Франции и др. странах на способы и устройства для магнитно-абразивной обработки свободным абразивным порошком в переменном, циклически меняющем полярность магнитном поле .

В 1960-1961 гг. в СССР две группы исследователей под руководством В. А. Шальнова и В. Н. Верезуба предложили способы абразивной обработки в поле электромагнита на постоянном токе плоских поверхностей из немагнитного материала.

В СССР в 1980-е - начале 1990-х годов исследованиями в области магнитно-абразивной обработки занимаются в основном научные коллективы Минска (Скворчевский Н. Я. , П. И. Ящерицын , Чачин В. Н. , Сакулевич Ф. Ю. , Хомич Н. С. , Кудинова Э. Н. , Абрамов В. И. , Кульгейко М. П. , Романюк С. И. , Михолап С. В. , Лепший А. П. , Али Хусейн Кадхум ) и Ленинграда (Барон Ю. М. , Приходько С. П. , Кобчиков В. С. , Нестеров В. М. , Желтобрюхов Е. М. ).

В 1990-е годы магнитно-абразивной обработкой занимаются коллективы научных подразделений Физико-технического института НАН Беларуси, БНТУ , научно-инженерного предприятия «Полимаг» (Беларусь). Разработаны и реализованы теоретические и практические задачи полирования в магнитном поле цилиндрических и сферических поверхностей изделий, работающих, преимущественно, в узлах трения машин и механизмов. Поисковые исследования показали перспективность применения магнитно-абразивной обработки для подготовки поверхностей изделий перед операциями сварки и нанесения покрытий.

В последние годы проводятся исследования по магнитно-абразивной обработке поверхностей прецизионных деталей электроники , оптики и лазерной техники (УП "Полимаг" . . , MATI (США)).

В последнее десятилетие технология магнитно-абразивной обработки получила развитие во многих странах мира. Исследованиями в этой области занимаются научные коллективы различных университетов и компаний:

- УП "Полимаг" (Н.С. Хомич и др.) - БНТУ - Физико-технический институт НАН Беларуси - Белорусский государственный аграрно-технический университет (Акулович Л.М., Сергеев Л.Е. и др.) - Индийский технологический институт (В. Джайн (V.K. Jain), Д. Сингх (Dhirendra K. Singh), В. Рагхурам (V. Raghuram), П. Кумар (Prashant Kumar) и др.) - Технологический университет «Туси» (М. Вахдати (M.Vahdati), Э. Садеджиния (E.Sadeghinia), А. Шокухфар (A.Shokuhfar)) - Гуандунский технологический университет, провинция Гуандун (Ян Ц.-с. (Q. S. Yan), Гао В.-ц. (W. Q. Gao) и др.) - Китайский университет Цзи Лян, провинция Чжэцзян (Сюй Л.-цз., L. J. Xu) - Ляонинский университет науки и технологии, провинция Ляонин (Чэнь Я. (Y. Chen), Янь Ф. (F. Yan), Чжу Ц.-ц. (C. Q. Zhu) и др.) - Тайюаньский технологический университет, провинция Шаньси (Чэн Хунлин (Cheng Hongling), Ли Вэньхуэй (Li Wenhui), Ян Шичунь (Yang Shichun), Яо Синьгао (Xingao Yao), Дин Яньхун (Yanhong Ding) и др.) - Чанчуньский университет науки и технологии, провинция Гирин (Чжан Шужэнь (Shuren Zhang), Ян Лифэн (Lifeng Yang), У Госян (Guoxiang Wu) и др.) - Чжэцзянский технологический университет, провинция Чжэцзян (Цзи Шимин (Shiming Ji), Чэнь Года (Guoda Chen) и др.) - Университет Хуа Чао, провинция Фуцзянь (Фан Цз.-ц. (J.C. Fang), Чжао Цз. (Z.Y. Zhao) и др.) - Хунаньский университет Юэлушань, провинция Хунань (Инь Шаоху\й (Shaohui Yin) и др.) - Шанхайский транспортный (Цзяотун) университет, город Шанхай (Ван Янь (Yan Wang), Ху Дэцзинь (Dejin Hu)) - Шэньянский Северо-Восточный университет, провинция Ляонин (Сунь (Y. P. Sun), Юань С.-с. (S. X. Yuan), Фэн Б.-ф. (B.F.Feng), Цай Г.-ц. (G.Q.Cai), Ши Цз.-с. (J.S.Shi), Ху Г.-ф. (G. F.Hu) и др.) - СПбГПУ (Ю. М. Барон) - ОГТУ (В. А. Литвиненко) - АГТУ (Иконников А.М. ) - Трансильванский университет (Т. Дяконеску (Т. Deaconescu), А. Дяконеску (А. Deaconescu) и др.) - г. Канзас (Л. Гиллеспи (LaRoux K. Gillespie)) - Компания MATI (Г. Кремень (G. Kremen)) , Л. Игельштейн (L. Igelshteyn) , С. Фейгин (S. Feygin) и др.) - Государственный Университет Оклахомы (Мин Цзян (Ming Jiang), Р. Командури (R.Komanduri)) - Национальный центральный университет в Чунли (Чан Гэнвэй (Geeng-Wei Chang), Янь Бинхуа (Biing-Hwa Yan), Чэн Цунжэнь (Tsung-Jen Cheng)) - (В.С. Майборода и др.) - ДонНТУ (Матюха П.Г., Гусев В.В. и др.) - Корейский институт передовой науки и технологий (Чхве Минсок (Min-Seog Choi)) - Национальный университет Пугён, Пусан (Ли Джунъин (Jung-In Lee), Квак Джэсоп (Jae-Seob Kwak), Кан Дэмин (Dae-Min Kang) и др.) - Университет Конгук (Ко С.-л. (S.-L. Ko), Пак Ч.-и. (J. I. Park)) - Университет Мёнджи (Ким Хинам (Hee-Nam Kim), Со Дихва (Dea-Wha Soh)) - Университет Сеён (Ким Джонду (Jeong-Du Kim)) - Университет Утсуномия (Т. Симмура (Takeo Shinmura), Я. Дзоу (Y. Zou), Х. Ямагути (Hitomi Yamaguchi), А. Кобаяси (A. Kobayashi)) - Политехнический колледж в Канто (Х. Фудзита (Hideki Fujita)) - Университет Яманаси (О. Сигиура (O. Sigiura)) - Нагойский университет (Т. Мори (T. Mori), К. Хирота (K. Hirota) и др.) - М. Андзай (Masahiro Anzai), Т. Имахаси (T. Imahashi) и др.

Классификация схем МАО

Классификация по трём признакам :

  • Функциональное назначение
    • I - магнитное поле формирует из порошковой ферромагнитной абразивной массы режущий инструмент с управляемой жесткостью и создает силы резания;
    • II - магнитное поле формирует из порошковой ферромагнитной абразивной массы режущий инструмент с управляемой жесткостью, создает силы резания и сообщает режущему инструменту движения резания;
    • III - магнитное поле сообщает силы и движения резания несформированной массе ферромагнитного абразивного порошка;
    • IV - магнитное поле сообщает необходимые для резания движения непосредственно заготовке или абразивному инструменту;
    • V - магнитное поле в зоне обработки интенсифицирует или улучшает качественные характеристики существующих абразивных способов обработки.
  • Форма обрабатываемых поверхностей
    • А - схемы обработки наружных поверхностей вращения;
    • Б - схемы обработки внутренних поверхностей вращения;
    • В - схемы обработки плоскостей и линейчатых фасонных поверхностей;
    • Г - схемы обработки трехмерных фасонных поверхностей.
  • Тип используемого магнитного индуктора
    • 1 - схемы с электромагнитными индукторами постоянного тока;
    • 2 - схемы с электромагнитными индукторами переменного тока;
    • 3 - схемы с электромагнитными индукторами трехфазного тока;
    • 4 - схемы с индукторами на постоянных магнитах.

Схемы МАО I группы:

а) Обработка наружных цилиндрических или фасонных поверхностей вращения (рисунок 1а). Для этого заготовку 1 помещают между полюсами электромагнита постоянного тока. Зазоры между полюсами 2 и обрабатываемой поверхностью заполняют магнитно-абразивным порошком 3. При этом образуется своеобразный абразивный инструмент, копирующий форму обрабатываемой поверхности. Жесткостью этого инструмента можно управлять, изменяя напряженность магнитного поля в рабочих зазорах. Магнитное поле удерживает порошок в зазорах и прижимает его к обрабатываемой поверхности. Необходимые для обработки движения резания - вращение и осцилляция заготовки вдоль оси.

б) Обработка наружных цилиндрических и фасонных поверхностей вращения небольших диаметров с консольным закреплением заготовок (рисунок 1б) . Обработке одновременно подвергают несколько заготовок 5, каждая из которых закреплена в отдельном шпинделе. Кольцевая ванна 4 выполнена из немагнитного материала и заполнена магнитно-абразивным порошком. По внутреннему и наружному периметрам ванны размещены полюсы электромагнитов противоположной полярности. При их включении порошок образует внутри ванны абразивную среду с регулируемой жесткостью. Заготовкам сообщают три рабочих движения: вращение вокруг собственных осей, осцилляцию вдоль оси и перемещение вдоль средней окружности кольцевой ванны.

в) Обработка винтовых поверхностей (рисунок 1в) . Заготовку помещают внутрь цилиндрической немагнитной камеры 9, укрепленной между полюсами электромагнита 8 постоянного тока, который при включении сообщает магнитно-абразивной порошковой массе внутри камеры заданную жесткость. При вращении заготовки 10 полируемая резьба, как шнек, стремится вытеснить магнитно-абразивный порошок из камеры, а полированию преимущественно подвергается одна сторона профиля резьбы. Для обработки второй стороны профиля изменяют направление вращения заготовки 10. Одновременно изменяется направление движения порошка.

г) Доводка рабочей поверхности резца (рисунок 1г) . Электромагнит 12 служит для удерживания магнитно-абразивного порошка 13 между полюсами и для изменения его жесткости синхронно с вертикальными осцилляциями резца. При движении резца вверх электромагнит включается, при движении вниз - выключается. Такая синхронизация включений-выключений необходима для предотвращения затупления режущих кромок резца.

д) Обработка внутренней поверхности немагнитного тонкостенного контейнера (рисунок 1д) . Порция магнитно-абразивного порошка 15 силами магнитного поля, наведенного электромагнитом 16, прижата к обрабатываемой поверхности и удерживается от вращения вместе с обрабатываемой деталью.

Схемы МАО II группы:

а) Обработка наружных поверхностей вращения (рисунок 2а). Осцилляция полюсных наконечников сообщает силами магнитного поля дополнительные движения магнитно-абразивному порошку в рабочих зазорах взамен осцилляции заготовки. Такая схема эффективна при магнитно-абразивной обработке на токарных станках, где для шпинделя не предусмотрено осциллирующее вдоль оси движение, а также при обработке массивных заготовок.

б) Обработка плоскостей с помощью индуктора на постоянных магнитах (рисунок 2б). На рабочей торцевой поверхности индуктора 2 по кольцу расположены чередующиеся полюсники и постоянные магниты . Магнитно-абразивный порошок, закрепленный силами магнитного поля на торцевой поверхности индуктора, вращается вместе с индуктором и производит полирование поверхности поступательно движущейся заготовки 1.

в) Обработка линейчатой фасонной поверхности (рисунок 2в). На заготовке 3 с помощью осциллирующего индуктора 4 на постоянных магнитах, сообщающего силы резания и осцилляции зернам магнитно-абразивного порошка, размещенного в рабочем зазоре .

г) Обработка наружной сферической поверхности (рисунок 2г)(а.с. 531715 СССР). Магнитное поле в рабочих зазорах наводится электромагнитом 5 постоянного тока . Обработка осуществляется при вращении заготовки 6 и полюсных наконечников 7; последние передают вращение магнитно-абразивному порошку 8 в рабочих зазорах.

д) Обработка внутренних беговых дорожек на кольцах шарикоподшипников (рисунок 2д)(а.с. 20444 НРБ). Осуществляется при введении внутрь обрабатываемого кольца 9 - вращающегося полюса 10 электромагнита 11 с удерживающимся на периферии его полюса магнитно-абразивным порошком.

е) Обработка внутренних поверхностей труб с помощью вращающегося электромагнита (рисунок 2е)(а.с. 21083 НРБ, а.с. 657978 СССР). Электромагнит имеет несколько секций катушек 12, размещенных в пазах корпуса 13. При этом кольцевые участки 14 становятся противоположно заряженными полюсами, удерживают на себе магнитно-абразивный порошок и передают ему рабочее вращательное движение. Дополнительно электромагнит перемещается вдоль оси трубы, увлекая за собой магнитно-абразивный порошок в рабочих зазорах.

Схемы МАО III группы:

а) Обработка внутренних поверхностей труб (рисунок 3а)(а.с. 55507 СССР). Помещают в трубу 1 магнитно-абразивный порошок 2 и заставляют его вращаться с помощью вращающегося магнитного поля, созданного трехфазным электромагнитным индуктором 3.

б) Обработка поверхностей произвольной формы (рисунок 3б) . Заготовку 4 произвольной формы закрепляют внутри немагнитного контейнера 5, окруженного электромагнитами 6. При поочередных импульсных включениях электромагнитов масса магнитно-абразивного порошка 7 перемещается внутри контейнера по направлению к включенному в данный момент электромагниту.

в) Обработка нижней поверхности листового материала (рисунок 3в). Листовой материал 8, протягивается между электромагнитом 9 и контейнером 10, содержащим магнитно-абразивный порошок 11 (Пат. 1507495 Франция).

  • Киселев Вячеслав Валериевич , преподаватель
  • Ивановская пожарно-спасательная академия ГПС МЧС России
  • ЧИСТОТА ПОВЕРХНОСТИ
  • МАГНИТ
  • ПОЛИРОВАНИЕ

Магнитно-абразивное полирование - это хорошо известный способ проведения финишной обработки, который позволяет получать высокое качество и чистоту обрабатываемой поверхности. Проведение данного вида обработки возможно применять для сложных рельефных и сложных фасонных поверхностей. В работе приведены некоторые особенности применения этой обработки.

  • Установка для оценки качества смазочных материалов, используемых в пожарной технике
  • Технологические особенности процесса магнитно-абразивного полирования
  • Техническое обслуживание автомобильной техники, как залог ее надежности
  • Разработка комбинированной смазочной композиции для узлов трения пожарной техники
  • Новая конструкция ремонтного стула для технического обслуживания автомобилей

Известно, что долговечность трущихся деталей в значительной степени зависит от качества обработки поверхностей. Наиболее часто в качестве финишной обработки поверхностей трения используют механическое полирование. В настоящее время свое развитие получает другой способ полирования - магнитно-абразивное полирование. По данной проблематике опубликовано значительное число работ, попробуем разобраться в преимуществах этого вида обработки.

Полирование является физико-химическим процессом финишной обработки, которая обеспечивает гладкие поверхности деталей с комплексом заданных эксплуатационных свойств. Цель операции - высокое качество обработанной поверхности. Под термином «качество поверхности» понимают единство трех показателей: шероховатость поверхности, ее «волнистость» и физико-механические характеристики. Качество поверхностного слоя имеет для машиностроения исключительно большое значение. Для его оценки используют количественные значения: шероховатость и волнистость.

Состояние поверхностей и приповерхностного слоя деталей и режущих инструментов в значительной мере определяют их эксплуатационные свойства. Для изделий и инструментов, к которым предъявляются требования долговечности и надежности, важны такие характеристики поверхности, как: коэффициент трения, длительность приработки, износостойкость, наличие дефектов в виде микротрещин, внутренние остаточные напряжения, коррозионная стойкость. Для других изделий могут оказаться важными светоотражательные свойства поверхности, ее способность поглощать газы и атомные частицы, электрическая и магнитная проводимость поверхностного слоя .

Одним из перспективных методов финишной обработки инструментов является метод магнитно-абразивного полирования (MAП). Полирование в магнитном поле позволяет получить высококачественные, высокоточные сферические, сферические и плоские поверхности оптических изделий, в том числе: поверхности тонких линз и деталей микро-оптики .

Сущность метода: магнитно-абразивный порошок располагается между полюсами электромагнитов, создавая режущий инструмент в виде своеобразной "полирующей щетки". При движении заготовки через рабочую зону порошок оказывает давление на деталь в каждой точке поверхности, что приводит к съему металла и сглаживанию микронеровностей. В роли связки абразивных зерен используется магнитное поле, обладающее упругими силами воздействия на единичные зерна. Причем степень упругости этой связки легко регулируется изменением напряженности магнитного поля, обеспечивая различные этапы обработки (черновое, чистовое полирование). Тем самым МАП может приближаться к шлифованию свободным или связанным абразивом, позволяя использовать преимущества первого или второго в одном рабочем цикле.

В общем случае при магнитно-абразивной обработке (МАО) инструментов в качестве основной рабочей среды используется ферроабразивный порошок (ФАП). Большинство технологических процессов МАО реализуется с использованием смазочно-охлаждающих жидкостей (СОЖ), существенно повышающих эффективность обработки.

Однако применение энергии магнитного поля в технологических целях является сложной научной и технической задачей. Наряду с использованием положений теоретического и прикладного электромагнетизма, а также электротехники потребовалось проведение комплексных исследований для определения наиболее оптимальных условий функционирования магнитного поля. Для более углубленного изучения топографии магнитного поля, его динамических, кинематических и других характеристик необходимо создание наиболее оптимальных параметров устройств, генерирующих магнитное поле .

Одним из новых перспективных способов отделочной обработки является магнитно-абразивное полирование (МАП), позволяющее на разнообразных по физико-механическим свойствам материалах (сталях, твердых сплавах, цветных металлах и сплавах, стекле и других неметаллах) получать низкие параметры шероховатости поверхности с высотой микронеровностей 0,05-0,4 мкм и благоприятными для эксплуатации другими характеристиками. Роль режущего инструмента при МАП выполняют магнитно-абразивные порошки, обладающие одновременно высокими магнитными и режущими свойствами. Гамма таких порошковых материалов создана в СССР и изготовляется промышленным способом. Силы резания создаются с помощью магнитного поля, воздействующего на зерна магнитно-абразивного порошка, размещенного между полюсами магнитного индуктора и обрабатываемой поверхностью.

Сущность МАП заключается в том, что обрабатываемой поверхности детали или порошку с магнитными и абразивными свойствами, помещенными в магнитное поле, сообщают принудительное движение относительно друг друга. Съем металла осуществляется в результате силового воздействия порошка на поверхность детали и указанных относительных движений.

Многообразие геометрических форм поверхностей, требующих отделочной обработки, и широкие возможности магнитных полей, способных выполнять в процессе абразивной обработки различные функции, привели к созданию различных схем магнитно-абразивного полирования. В частности существуют некоторые схемы полирования деталей. В этом случае магнитное поле формирует из порошковой ферромагнитной абразивной массы 3 своеобразный режущий инструмент, воспроизводящий форму обрабатываемой поверхности, и создает нормальные и тангенциальные силы, прижимающие зерна порошка к детали 1 и удерживающие их в рабочем зазоре. Движения резания обрабатываемой детали сообщаются обычным электромеханическим способом. Кроме вращения детали, являющегося в этой схеме главным движением резания, детали или полюсам электромагнитов 2 может быть сообщена осцилляция вдоль оси вращения.

Силы резания независимо от схемы полирования создаются магнитным полем, а величина и направление этих сил определяются напряженностью и структурой поля в рабочем пространстве.

На величину сил резания можно влиять, изменяя силу тока в обмотках электромагнитов, величину зазоров между деталью и полюсами электромагнита, а также структуру поля в рабочем пространстве, которая в известной мере определяется конфигурацией полюсов электромагнитов и размерами межполюсного пространства.

Особенностями магнитно-абразивного полирования являются устранение динамических нагрузок абразивных зерен при резании абразивным инструментом и появление в результате этого вспышек высоких критических температур в локальных зонах обрабатываемой поверхности, отсутствие трения связки о детали и резкое уменьшение общей температуры резания, отсутствие необходимости периодической фасонной правки абразивного инструмента и отсутствие вообще необходимости изготовления абразивного инструмента на жесткой связке.

Список литературы

  1. Барон Ю. М. Магнитно-абразивная и магнитная обработка изделий и режущих инст-рументов..- Л.: Машиностроение. Ленингр. 1986. - 176 с;
  2. Сакулевич Ф.Ю. и др. - Магнитно-абразивная обработка точных деталей. - Мн.: "Высш. школа", 1977. -288 с.
  3. Скворчевский Н.Я., Федорович Э.Н., Ящерицын П.И. Эффективность магнитно-абразивной об¬работки.- Мн.: Наука i техника, 1991.-215 с.

Введение

Состояние поверхностей и приповерхностного слоя деталей и режущих инструментов в значительной мере определяют их эксплуатационные свойства.

Для изделий и инструментов, к которым предъявляются требования долговечности и надежности, важны такие характеристики поверхности, как: коэффициент трения, длительность приработки, износостойкость, наличие дефектов в виде микротрещин, внутренние остаточные напряжения, коррозионная стойкость.

Для других изделий могут оказаться важными светоотражающие свойства поверхности, ее способность поглощать газы и атомные частицы, электрическая и магнитная проводимость поверхностного слоя.

Общеизвестно, что физико-химические и механические свойства приповерхностного слоя могут существенно отличаться от свойств основного материала детали. При этом окончательные свойства поверхности являются результатом воздействия на деталь в процессе ее изготовления и особенно на финишных операциях.

Возрастающие и расширяющиеся требования к поверхностям вызывают потребность совершенствовать существующие технологические способы, расширяющие возможности отделочной и упрочняющей технологии.

Отдельное внимание приходится уделять состоянию поверхностей режущих инструментов, поскольку от них зависит стойкость и расход инструментов, а также производительность, качество обработки инструментами, стабильность ее результатов.

Появление магнитно-абразивного полирования (МАП) и магнитной обработки (МО) деталей и инструментов является следствием названных выше тенденций.

Первые предложения использовать магнитное поле для абразивной обработки относятся к 1938 году.

Первые публикации об исследованиях и применении абразивной обработки с использованием магнитного поля появились в 60-х годах ХХ столетия и принадлежат советским ученым: Барону Ю.М., Верезубу В.Н., Герасеменку Ю.В., Хохлову Б.А., Шальнову В.А., Шулеву Г.С.

Большой вклад в эту работу внесли: Калининградский технологический институт рыбной промышленности и хозяйства, Ленинградский политехнический институт, Физико-технический институт А.Н. БССР, Уфимский авиационный институт, Московский технологический институт легкой промышленности, Институт проблем материаловедения А.Н. УССР, Институт сверхтвердых материалов А.Н. УССР.

В процессе магнитно-абразивного полирования обрабатываемый материал подвергается: механическому абразивному воздействию; воздействию переменного по величине и направлению магнитного поля, которое благоприятно отражается на эксплуатационных свойствах поверхностного слоя изделий.

Это обстоятельство позволяет магнитную обработку выделить в самостоятельный способ упрочняющей обработки .


1. Разновидности магнитно - абразивной обработки

1.1 Удаление заусенцев

Рисунок 10.1 - Схема МАО по удалению заусенцев

Заготовка, совершая движение осцилляции в вертикальном направлении, двигается поступательно со скоростью в межполюсном пространстве электромагнита, заполненном ферромагнитным абразивным порошком.

Таким способом на заготовках из стали марки 10Х18Н9Т исходные заусенцы (после вырубки) высотой 0,2...0,4 ммудаляются полностью за 12...15 с машинного времени.

Ферромагнитный абразивный порошок – крошка закаленного чугуна зернистостью 1000/630 мкм.

1.2 Скругление кромок и удаление заусенцев в рассверленных

отверстиях.

Рисунок 10.2 - Схема скругления кромок

1 – пластина; 2 – заготовка;

3 – ферромагнитный абразивный порошок;

Пластина 1 с заготовкой 2 устанавливается в межполюсное пространство электромагнита. Туда же засыпается ферромагнитный абразивный порошок.

Пластина вместе с заготовкой совершает рабочее движение – осцилляцию с частотой с -3 . Один полюс электромагнита вращается с частотой n =12...23 с -3 . При вращении он увлекает вместе с собой ферромагнитный абразивный порошок 3, осуществляющий удаление заусенцев и скругление кромок [Патент 112092 ГДР].

1.3 Очистка катаной проволоки от окалины

Рисунок 10.3 - Схема очитки проволоки

1 – проволока; 4 – воронка подвижная;

2 – бункер для абразивного порошка; 5 – электропривод;

3 – воронки неподвижные; 6 – электромагнитная катушка.

Проволока 1 с высокой скоростью протягивается через воронки 3 и 4, заполняемые ферромагнитным абразивным порошком из бункера 2.

Воронки (не магнитные) размещены внутри электромагнитных катушек 6, питаемых постоянным током.

Для повышения интенсивности очистки проволоки нижнюю воронку 4 приводят во вращение с помощью электропривода 5.

1.4 Очитка печатных плат

В процессе изготовления и последующей эксплуатации на печатных платах (на медном покрытии) появляются оксидные пленки, которые ухудшают их электропроводность. Периодически оксидную пленку необходимо удалять. Для этого применяется следующий способ (рисунок 10.4):

Рисунок 10.4 - Схема очистки печатных плат

1,2 – полюсы электромагнита; 3 – печатная плата;

4 – ферромагнитный порошок.

Полюсы электромагнита выполнены в виде рифленых валиков 1 и 2, вращающихся с определенной окружной скоростью навстречу друг другу. В зазоре между ними протягивается загрязненная печатная плата 3, на которую подается ферромагнитный порошок 4. За счет магнитных сил порошок постоянно находится на ведущем валике 1 и удаляет оксидную пленку с печатной платы 3.

1.5 Получение рельефных изображений на поверхностях

Рисунок 10.5 - Схема получения рельефных изображений на поверхностях

1 – соленоид; 5 – форма;

2 – немагнитная труба; 7,10 – полюсы электромагнита;

3,6 – сердечники; 8 – шаблон;

4 – заготовка; 9 – заготовка.

Внутри соленоида 1 размещают немагнитную трубу 2 с вмонтированными в ней сердечниками 3 и 6. Над заготовкой 4 из хрупкого материала располагают форму 5, полость которой своим контуром повторяет контур будущего рельефного изображения. Полость заполняют кусочками постоянных магнитов. Поверхность каждого кусочка покрыта абразивным слоем.

При подключении соленоида к источнику переменного тока магнитики внутри полости формы 5 получают вертикальные перемещения и производят абразивную обработку. (Это устройство может быть использовано для сверления сквозных отверстий в хрупких материалах).

Напряженность магнитного поля составляет 10...100 А/м, а частота импульсов – 10 4 ...10 5 Гц.

Рисунок 10.5 – в .

Здесь заготовку 9 с шаблоном 8 помещают между вращающимися полюсами электромагнитов 7 и 10. Пространство между обрабатываемой поверхностью и верхним полюсом заполнено ферромагнитным абразивным порошком. Заготовке сообщают возвратно - поступательное движение. При этом порошок осуществляет удаление определенного припуска с участков верхней поверхности заготовки, не защищенных шаблоном.

1.6 Измельчение материалов

Установка для измельчения материалов устроена следующим образом.

Рисунок 10.6 - Схема устройства для измельчения материалов

1 – соленоид; 2 – сердечник; 3 – контейнер.

Внутри соленоида 1 размещается сердечник 2 и на нем контейнер 3 из немагнитного материала.

В контейнер помещают смесь измельчаемого материала и постоянных магнитов с абразивным покрытием. При включении переменного магнитного поля магнитным частицам сообщается движение со значительными амплитудами. В контейнер дополнительно подают циркулирующую жидкость.

С помощью наложения магнитного поля можно интенсифицировать галтовку, виброабразивную, пескоструйную обработку.

Например, при включении электромагнита 1 (рисунок 10.7), охватывающего вибрирующий контейнер 2, импульсное или вращающееся магнитное поле препятствует движению ферромагнитных заготовок вместе с абразивной средой.

Рисунок 10.7 - Схема установки для интенсификации обработки с помощью наложения магнитного поля

1 – электромагнит; 2 – контейнер; 3 – вибратор.

В результате увеличивается скорость перемещения абразивных элементов относительно заготовок и увеличивается производительность виброабразивной обработки.

В случае немагнитных заготовок для получения аналогичного эффекта абразивная среда должна обладать ферромагнитными свойствами.

Наиболее распространенной областью применения магнитно-абразивной обработки (МАО) является снижение шероховатости на обрабатываемых поверхностях с одновременным повышением качественных характеристик поверхностного слоя.

Совокупность способов, преследующих именно эти цели, называется магнитно-абразивным полированием (МАП).

2. Магнитно-электрическое шлифование

Сущность магнитно-электрического шлифования (МЭШ) заключается в том, что электропроводный шлифовальный круг вводится в контакт с обрабатываемой поверхностью детали, а на круг и деталь подается постоянный электрический ток, причем зона обработки помещается в магнитное поле, вектор магнитной индукции которого перпендикулярен вектору электрического тока. Деталь и шлифовальный круг приводятся во вращение с разной угловой скоростью.

Рисунок 10.8 - Схема магнитно-электрического шлифовани.

Физическая сущность МЭШ заключается в следующем:

1) При контакте инструмента-круга с поверхностью обрабатываемой детали замыкается электрическая цепь «круг-деталь», при этом происходят все физические явления, свойственные контактной магнитно-электрической обработке (МЭО) (разогрев поверхности, ее размягчение, расплавление, выброс расплава и пластичного материала).

2) При контакте абразивного круга с обрабатываемой поверхностью образуется стружка, которая по мере движения зерна увеличивается и замыкает межэлектродный промежуток δ между деталью и кругом.

Рисунок 10.9 - Схема взаимодействия зерна круга с деталью

Такое короткое замыкание приводит практически к мгновенному ее расплавлению, распылению магнитным полем и удалению продуктов расплава с большой скоростью из зоны обработки, при этом очищается зерно и круг не засаливается, а расплав нагревает и обрабатывает набегающую поверхность детали.

При подобном явлении сзади стоящего (последующего) зерна расплав и пластичный материал создают дополнительную опору задней поверхности зерна, увеличивая режущую способность, так как может воспринимать большее усилие.

Исследованием было установлено, что абразивные зерна обладают пьезоэлектрическим эффектом (изменением объемов при наложении разности потенциалов; либо изменение потенциала при его деформации).

Так как процесс протекает при импульсном токе разных частот и гармоник, то зерна вибрируют, осциллируя с той же частотой, что интенсифицирует процесс шлифования, улучшает качество поверхности и изменяет физико-механические свойства.

Пользуясь этим эффектом, можно управлять процессом МЭШ, так как наибольший импульс происходит при разрушении зерна.

Если звук усиливать через усилитель, то можно услышать как зерно «кричит», что сигнализирует о его предельной режущей возможности.

Так как часто в качестве абразивного материала шлифовальных кругов используется электрокорунд (Al 2 O 3 -рубин), то при наложении электрического потенциала магнитного поля происходит возбуждение энергии кристалла (его «накачка»), следовательно, он может излучать кванты энергии.

Это в свою очередь воздействует на обрабатываемую поверхность, интенсифицирует процесс, дополнительно снимает материал детали и приводит к изменениям физико-механических свойств поверхности.

Все эти основные факторы позволяют вести процесс шлифования с производительностью значительно выше производительности обычного шлифования.

2.1 Особенности абразивного резания при магнитно абразивном полировании

Схема перемещения зерен порошка в рабочей зоне при наружном круглом полировании дана на рисунке 10.10:

Рисунок 10.10 - Схема перемещения зерен порошка в рабочей зоне

Заготовка 1 размещается между полюсами магнитного индуктора. Пространство между полюсами индуктора частично или полностью заполнено магнитно-абразивным порошком. Это - рабочая зона. Пространство между полюсами индуктора и обрабатываемой поверхностью называется рабочим зазором.

Порция магнитно-абразивного порошка при включении магнитного поля удерживается силами магнитного поля в рабочем зазоре, оказывается прижатой к обрабатываемой поверхности и при вращении заготовки относительно индуктора (или наоборот) осуществляет полирование.

При этом удаляется припуск и формируется поверхность с новым микрорельефом и измененными физико- механическими свойствами поверхностного слоя.

Механизм образования резания (зафиксированный с помощью скоростной киносъемки) сводится к следующему.

Вся порция порошка в рабочем зазоре под действием сил трения со стороны двигающейся заготовки смещается к выходу из рабочего зазора и уплотняется, встречая там основное противодействие со стороны магнитного поля.

Силы трения между зернами и поверхностью полюса помогают магнитному полю удерживать порошок внутри рабочего зазора. Не связанные между собой зерна порошка перемещаются внутри рабочего зазора.

В частности, граничащие с заготовкой зерна «а» медленно двигаются к выходу из рабочего зазора. Скорость зерна значительно меньше скорости обрабатываемой поверхности. При скорости обрабатываемой поверхности в пределах 0,...2,1 м/с скорость зерна составляет всего лишь 0,01...0,02 м/с, то есть меньше в 60...105 раз.

С учетом этого отношения можно принять, что скорость резания – это есть разность между скоростями обрабатываемой поверхности и зерна.

Подойдя к границе рабочего зазора, каждое из зерен «а» может либо остановиться (совершая здесь колебательные движения вдоль дуги окружности), либо выйти из рабочего зазора вместе с обрабатываемой поверхностью.

При небольшой частоте вращения заготовки эти зерна могут переходить в противоположный зазор вместе с вращающейся поверхностью заготовки.

При увеличении скорости заготовки на переходящие зерна действуют увеличенные центробежные силы, которые совместно с магнитными силами заставляют переходящие зерна отрываться от заготовки и оседать на нерабочих поверхностях полюсов.

Разбрасывание зерен является одной из причин постепенного снижения интенсивного удаления припуска с увеличением длительности полирования.

Свободные места зерен «а» могут занимать зерна «в» (кратковременно) из более глубоких слоев порошковой массы.

На каждое зерно действует сила резания Р z (если зерно внедрилось в поверхность и осуществляет микрорезание), либо силы трения F тр .

Рисунок 10.11 - Силы, действующие на зерно

Эти силы стремятся увлечь контактирующее зерно вместе с двигающейся поверхностью и повернуть его относительно собственного момента инерции. Движению зерна вместе с поверхностью заготовки и их поворотам препятствуют окружающие зерна, которые под действием сил магнитного поля образуют достаточно плотную массу.

Если сила резания превысит сопротивление повороту зерна (из-за увеличенной микронеровности), то такое зерно поворачивается и в контакт с заготовкой вступают его новые участки и новые режущие кромки.

Именно этими поворотами объясняется прерывистый характер рисок - следов абразивного резания на поверхности заготовки.

При сообщении порошковой массе дополнительных движений с помощью осцилляции (колебаний) заготовки (или полюсов) или пульсирующего магнитного поля контакт зерен с заготовкой приобретает более прерывистый характер.

Силы трения F тр уменьшаются и порошок лучше удерживается магнитными силами в рабочем зазоре.

Одновременно увеличивается подвижность зерен внутри рабочих зазоров и интенсифицируется вступление в контакт с заготовкой новых режущих кромок. Это явление называется самозатачиванием порошковой массы.

Естественно, в процессе полирования происходит постепенное разрушение зерен путем вырывания из ее мягкой ферромагнитной основы зерна (матрицы) вкрапленных в нее режущих центров или путем истирания матрицы. При этом тоже происходит обнажение новых режущих кромок.

Зерна ферромагнитного порошка в процессе полирования контактируют с заготовкой разными участками своей поверхности, отличающимися твердостью и геометрической формой, а значит и разной способностью производить резание.

Обработанная поверхность представляет собой совокупность рисок - следов резания и выглаженных участков. Направление рисок определяется скоростями рабочих движений заготовки и магнитного индуктора.

2.2 Стружкообразование

Установлено, что 9...15% объема царапин удалено диспергированием (лат. Dispergo -рассеиваю), тонким измельчением металла в стружку, а остальной объем металла вытеснен из царапин пластически в боковые навалы.

Соотношение размеров стружки - длины и толщины, лежит в пределах 5...20. На их поверхности видны отдельные сильно деформированные элементы. Следов оплавления стружек не обнаружено.

При одинаковых размерах радиуса кривизны стружек МАП на порядок меньше (т.е. в 10 раз), чем у стружек, полученных при шлифовании абразивной лентой.

Это косвенно свидетельствует о более высокой степени пластических деформаций измельченного металла в процессе магнитно-абразивного полирования.

Результатом пластического деформирования поверхности является повышение твердости тонкого приповерхностного слоя и образование в нем остаточных напряжений сжатия.

В теории абразивной обработки установлено, что стружкообразование возможно при определенном соотношении между глубинно h внедрения режущих вершин зерен абразивного инструмента в обрабатываемую поверхность и радиусов округлений этих вершин.

Для инструментальной стали У8 (отожженной) это соотношение лежит в следующих пределах: .

При меньшем соотношении возможно лишь пластическое или упругое деформирование.

Для МАП характерно внедрение зерен h ≤0,1...0,4 мкм. Для порошка 23АМ40Fe (белый электрокорунд с зернистостью М40) вершин зерен должен составлять 3...4 мкм.

Образование стружки при МАП сталей (в отличие от шлифования) происходит при ε≤0,005...0,13, то есть при более неблагоприятных условиях.

И силы, необходимые для стружкообразования, при МАП оказываются меньше, чем при шлифовании.

Для МАП ферромагнитных сталей давление порошка на обрабатываемую поверхность составляет 0,3...0,2 МПа.

При пересчете этих давлений к отдельному контактирующему зерну усилие, определяющее внедрение зерна в обрабатываемую поверхность, может составлять 0,025...0,125 Н.

Присутствие в СОЖ поверхностно-активных веществ снижает поверхностную энергию металла, снижает работу, необходимую на разрушение и пластическое деформирование поверхности, увеличивая микротрещины, предразрушает поверхностный слой.

В этом случае производительность МАП резко увеличивается.

Увеличение скорости резания (скорости деформации) сопровождается упрочнением разрушаемого материала. Глубина внедрения зерен порошка в обрабатываемую поверхность автоматически уменьшается и съем металла на одинаковом пути резания уменьшается.

С учетом изложенных особенностей МАП глубина внедрения зерен порошка в обрабатываемую поверхность может быть выражена зависимостью степенного вида:

мкм (10.2)

где – коэффициент, учитывающий изменение прочностных свойств поверхностного слоя по сравнению с основным обрабатываемым материалом (в результате воздействия СОЖ, скорости деформации, предварительного наклепа...);

– сила, прижимающая зерно, Н;

r – радиус вершин зерна, мкм;

Н – твердость обрабатываемого материала;

– коэффициент, учитывающий изменение твердости материала в присутствии переменного магнитного поля;

m,r,s – показатели степени.

3. Контрольные вопросы

1. Когда начали применять магнитное поле для абразивной обработки материалов?

2. Разновидности магнитно-абразивной обработки.

3. Какова сущность магнитно-электрического шлифования?

4. В чем состоят особенности абразивного резания при магнитно-абразивном полировании?

дним из прогрессивных финишных процессов обработки свободными абразивами является способ магнитно-абразивного полирования (МАП). Первые его теоретические исследования выполнены в Физико-техническом институте АН БССР .

К настоящему времени на способы магнитно-абразивного полирования и устройства для их воспроизведения имеется более 250 изобретений, и в этом разнообразии схем необходимо ориентироваться. Ограничиться каким-либо одним признаком классификации не представляется возможным, поскольку при выборе той или иной схемы руководствуются разными мотивами. Барон Ю.М. предлагает схемы МАП классифицировать по трем признакам:

1) функциональному назначению магнитного поля в каждом конкретном случае;

2) технологическому признаку — форме обрабатываемых поверхностей;

3) типу используемого магнитного индуктора.

Согласно 1-му признаку все известные схемы магнитно-абразивного полирования могут быть разделены на пять групп, которые условимся обозначать римскими цифрами:

Группа I — магнитное поле формирует из порошковой ферромагнитной абразивной массы режущий инструмент с управляемой жесткостью и создает силы резания.

Группа II — магнитное поле форми­рует из порошковой ферромагнитной абразивной массы режущий инструмент с управляемой жесткостью, создает силы резания и сообщает режущему инструменту движения резания.

Группа III -магнитное поле сообщает силы и движения резания несформированной массе ферромагнитного абразивного порошка.

Группа IV — магнитное поле сообщает необходимые для резания движений непосредственно заготовке или абразивному инструменту.

Группа V — магнитное поле в зоне обработки интенсифицирует или улучша­ет качественные характеристики существующих абразивных способов обработки.

Общим для всех групп является присутствие переменного магнитного поля (переменным из-за относительных перемещений заготовки и индуктора, независимо от его типа) в зоне абразивного резания, изменение под его воздействием механических характеристик обрабатываемого металла и активизация химико-физических явлений, способствующих интенсификации резания и полирования.

Согласно 2-му признаку схемы удобно разделить на четыре группы, которые условимся обозначать заглавными буквами русского алфавита:

А — схемы полирования наружных поверхностей вращения;

Б — схемы полирования внутренних поверхностей вращения;

В — схемы полирования плоскостей и линейчатых фасонных поверхностей;

Г — схемы полирования трехмерных фасонных поверхностей.

Поскольку существуют схемы и устройства, позволяющие производить полирование разных по форме поверхностей, то обозначение таких схем могут включать одновременно две или три буквы.

По типу индуктора, создающего в зоне обработки магнитное поле, все схемы МАП подразделяются на четыре группы:

1 – схемы с электромагнитными индукторами постоянного тока;

2 – схемы с электромагнитными индукторами переменного тока;

3 – схемы с электромагнитными индукторами трехфазного тока;

4 – схемы с индукторами на постоянных магнитах.

С учетом принятых нами обозначений каждой схеме магнитно-абразивного полирования или устройству для МАП может быть присвоен шифр, раскрывающий характерные признаки данной схемы полирования и ее технологические возможности. Например, шифр I-А-4 обозначает, что данная схема МАП позволяет осуществлять полирование наружных поверхностей вращения с помощью магнитного поля в рабочих зазорах формируется абразивный инструмент из магнитно-абразивного порошка и создаются силы резания, а необходимые рабочие движения сообщаются заготовке обычными средствами.

На рис. 1.10, а - д представлены примеры схем МАП I группы. Для обработки наружных цилиндрических или фасонных поверхностей вращения заготовку 1 помещают между полюсами электромагнита постоянного тока (рис. 1.10, а ). Зазоры между полюсами 2 и обрабатываемой поверхностью заполняют магнитно-абразивным порошком 3.

Рис. 1.10. Схемы МАП (I группа классификации): а) – обработка наружных цилиндрических поверхностей; б) — полирование наружных цилиндрических поверхностей вращения с консольным закреплением заготовки; в) – полирование винтовых поверхностей; г) – доводка рабочей поверхности резца; д) – полирование внутренней поверхности немагнитного контейнера; 1 , 5 , 10 – заготовка; 2 – полюса электромагнита; 3, 13, 15 4 – кольцевая ванна; 6, 7, 8, 12, 16 – электромагнитные катушки; 9, 14 – немагнитная камера; 11 – рабочая поверхность резца

При этом образуется своеобразный абразивный инструмент, копирующий форму обрабатываемой поверхности. Жесткостью этого инструмента можно управлять, изменяя напряженность магнитного поля в рабочих зазорах. Магнитное поле удерживает порошок в зазорах и прижимает его к обрабатываемой поверхности. Необходимые для полирования движения резания — вращение и осцилляцию вдоль оси - сообщают заготовке с помощью обычных электромеханических приводов.

На рис. 1.10, б показана схема полирования наружных цилиндрических и фасонных поверхностей вращения небольших диаметров с консольным закреплением заготовок. Обработке одновременно подвергают несколько заготовок 5, каждая из которых закреплена в отдельном шпинделе. Кольцевая ванна 4 выполнена из немагнитного материала и заполнена магнитно-абразивным порошком. По внутреннему и наружному периметрам ванны размещены полюсы электромагнитов противоположной полярности. При их включении порошок образует внутри ванны абразивный инструмент (среду) с регулируемой жесткостью. Заготовкам сообщают три рабочих движения: вращение вокруг собственных осей, осцилляцию вдоль оси и перемещение вдоль средней окружности кольцевой ванны.

Для полирования винтовых поверхностей предназначена схема, изображенная на рис. 1.10, в .

Здесь заготовку помещают внутрь цилиндрической немагнитной камеры 9, укрепленной между полюсами электромагнита 8 постоянного тока, который при включении сообщает магнитно-абразивной порошковой массе внутри камеры заданную жесткость. Выходные отверстия камеры соединены трубопроводом (на рисунке не показан). При вращении заготовки 10 полируемая резьба, как шнек, стремится вытеснить магнитно-абразивный порошок из камеры, а полированию преимущественно подвергается одна сторона профиля резьбы. Для увеличения давления внутри камеры на выходах из нее установлены дополнительные электромагнитные катушки 6 и 7 . Включенной должна быть одна из них (например, 7 ). При этом увеличивается сопротивление прохождению магнитно-абразивного порошка через выходное отверстие камеры и тем самым создается дополнительное давление в камере. Силы резания увеличиваются и более равномерно обрабатывается резьба по высоте профиля. Для обработки второй стороны профиля изменяют направление вращения заготовки 10. Одновременно изменяется направление движения порошка. Для создания дополнительного давления в камере необходимо выключить катушку 7 и включить катушку 6.

На рис. 1.10, г приведена схема доводки магнитно-абразивным способом рабочих поверхностей резца 11. Электромагнит 12 служит здесь для удерживания магнитно-абразивного порошка 13 между полюсами и для изменения его жесткости синхронно с вертикальными осцилляциями резца. При движении резца вверх электромагнит включается, при движении вниз — выключается. Такая синхронизация включений — выключений необходима для предотвращения затупления режущих кромок резца. Полирование внутренней поверхности немагнитного тонкостенного контейнера 14 предлагается осуществлять по схеме, изображенной на рис. 1.9, д . Порция магнитно-абразивного порошка 15 силами магнитного поля, наведенного электромагнитом 16, прижата к обрабатываемой поверхности и удерживается от вращения вместе с обрабатываемой деталью.

На рис. 1.11, а — е представлены схемы МАП, относящиеся к группе II. Осцилляция полюсных наконечников при полировании наружных поверхностей вращения (рис. 1.11, а ) сообщает силами магнитного поля дополнительные движения магнитно-абразивному порошку в рабочих зазорах взамен осцилляции заготовки (см. рис. 1.10, а ). Такая схема эффективна при магнитно-абразивном полировании на токарных станках, где для шпинделя не предусмотрено осциллирующее вдоль оси движение, а также при полировании массивных заготовок.

Полировать плоскости можно с помощью индуктора на постоянных магнитах (рис. 1.11, б). На рабочей торцовой поверхности индуктора 2 по кольцу расположены чередующиеся полюсники и постоянные магниты. Магнитно-абразивный порошок, закрепленный силами магнитного поля на торцовой поверхности индуктора, вращается вместе с индуктором и производит полирование поверхности поступательно движущейся заготовки. На рис. 1.11, в показана схема полирования линейчатой фасонной поверхности на заготовке 3 с помощью осциллирующего индуктора 4 на постоянных магнитах, сообщающего силы резания и осцилляции зернам магнитно-абразивного порошка, размещенного в рабочем зазоре. Схема полирования наружной сферической поверхности изображена на рис. 1.10, г . Магнитное поле в рабочих зазорах наводится электромагнитом 5 постоянного тока. Полирование осуществляется при вращении заготовки 6 и полюсных наконечников 7 ; последние передают вращение магнитно-абразивному порошку 8 в рабочих зазорах.

Рис. 1.11. Схемы МАП (II группа классификации): а) – полирование поверхностей вращения; б) – полирование плоскости; в) – полирование линейчатой фасонной поверхности; г) – полирование наружной сферической поверхности; д) – полирование внутренних беговых дорожек на кольцах шарикоподшипников; е) – обработка внутренней поверхности труб; 1, 3, 6, 9 – деталь; 2, 4 – индуктор; 5, 11, 12 – электромагнит; 7, 10 – полюсные наконечники; 8, 14 – магнитно-абразивный порошок; 13 – пазы корпуса

Полирование внутренних беговых дорожек на кольцах шарикоподшипников осуществляется при введении внутрь обрабатываемого кольца 9 — вращающегося полюса 10 электромагнита 11 с удерживающимся на периферии его полюса магнитно-абразивным порошком (рис. 1.11, д). С помощью вращающегося электромагнита можно обрабатывать внутренние поверхности труб. Электромагнит имеет несколько секций катушек 12 , размещенных в пазах корпуса 13 (рис. 1.11, е). При этом кольцевые участки 14 становятся противоположно заряженными полюсами, удерживают на себе магнитно-абразивный порошок и передают ему рабочее вращательное движение.

Дополнительно электромагнит перемещается вдоль оси трубы, увлекая за собой магнитно-абразивный порошок в рабочих зазорах.

В схемах группы III магнитное поле перемещает порошковую абразивную массу внутри заготовки или снаружи. При перемещениях порошка зерна ударяются об обрабатываемую поверхность или скользят по ней, осуществляя полирование (рис. 1.12, а — в ). Например, предложено обрабатывать отверстия во втулке (трубе) 1, поместив туда магнитно-абразивный порошок 2 и заставив его вращаться с помощью вращающегося магнитного поля, созданного трехфазным электромагнитным индуктором 3 (рис.1.12, а ). Реальность движения порошковой массы, обладающей очень высоким электрическим сопротивлением, представляется весьма сомнительной. Тем не менее зафиксировано уже несколько изобретений, предлагающих аналогичный принцип обработки.

На рис. 1.12, б показана работоспособная схема МАП, относящаяся к этой же группе. Заготовку 4 произвольной формы закрепляют внутри немагнитного контейнера 5, окруженного электромагнитами 6. При поочередных импульсных включениях электромагнитов масса магнитно-абразивного порошка 7 перемещается внутри контейнера по направлению к включенному в данный момент электромагниту. На рис. 1.12, в показана аналогичная схема обработки нижней поверхности листового материала 8, протягиваемого между электромагнитом 9 и контейнером 10, содержащим магнитно-абразивный порошок 11. При импульсных включениях электромагнита порошок поднимается вверх и ударяется об обрабатываемую поверхность.

В схемах группы IV магнитное поле используют для приведения в движение заготовок либо для создания сил резания в контакте немагнитного абразивного инструмента с обрабатываемой поверхностью.

Рис. 1.12. Схемы МАП (III группа классификации): а) – обработка отверстия во втулке; б) – обработка заготовки произвольной формы; в) – обработка нижней поверхности листового материала; 1 – втулка; 2, 7, 11 – магнитно-абразивный порошок; 3 – трехфазный электромагнитный индуктор; 4 – заготовка; 5, 10 – немагнитный контейнер; 6, 9 – электромагнит

При этом необходимые усилия создаются магнитным притяжением или взаимодействием индукционных токов в заготовке (инструменте) с наведенным в рабочей зоне магнитным полем (рис. 1.13, а — г ).

На установке, изображенной на рис. 1.13, а , заготовки 5 размещаются на неподвижном барабане 4, покрытом абразивом, удерживаются на нем и прижимаются к нему силами магнитного поля, создаваемого электромагнитом постоянного тока 5 . Заготовки, намагничиваясь одноименно, не соприкасаются друг с другом и располагаются на поверхности барабана группами, благодаря выступам на торцах сердечников 2 электромагнитов 1. При одновременном вращении сердечников 2 и электромагнита 3 от двигателя 6 заготовки 5 обкатываются по абразивной поверхности барабана 4, а вращение электромагнитов 1 с зубцами на торцах сердечников заставляет заготовки осциллировать вдоль оси. Имеется опыт полирования заготовок из незакаленной стали марки У8А диаметром 2-5 мм. Снижение параметра шероховатости от R a = 0,8÷1 мкм до R a = 0,08÷0,15 мкм на заготовках диаметром 2 мм достигается за 3 мин (отнесенных к одной заготовке), для достижения R a = 0,01÷0,04 мкм на заготовках диаметром 5 мм потребовалось 5 мин.

На рис. 1.13, б показана схема магнитно-абразивного полирования поверхностей вращения, не требующая закрепления заготовок. Заготовка 7 из питающего бункера попадает в рабочее пространство между двумя линейными трехфазными статорами 8 и 10, активные плоскости которых армированы абразивом (брусками, полотном). Если абразивные обкладки 9 расположить параллельно, то заготовка под действием электродинамических сил начнет вращаться и, обкатываясь по одной из обкладок, будет двигаться вдоль межстаторного пространства. Полируемая поверхность при этом будет проскальзывать по второй абразивной обкладке. Если на пути заготовки поставить преграду или (как это показано на рисунке), поворотом статора 10 расположить обкладки не параллельно, то заготовка будет вращаться на одном месте. При этом поверхность вращения ее будет соприкасаться с абразивными обкладками и полироваться. По окончании полирования статор 10 поворотом отводят, и заготовка самостоятельно «уходит» из рабочей зоны. Для полирования таких же заготовок предлагается в зоне между двумя линейными трехфазными статорами сообщать заготовкам — роликам вращение и поступательное движение. При движении по замкнутому треку, заполненному абразивной суспензией, заготовки подвергаются полированию. – постоянные магниты; 19 – головка шпинделя

На рис. 1.13, в приведена схема обработки внутренней поверхности трубы 11 абразивными брусками 12. Бруски выполнены подвижными в корпусе 13 и с помощью резинового баллона 14 со сжатым воздухом прижаты к обрабатываемой поверхности. Вращение корпусу 13 с абразивными брусками передается от вращающегося магнитного поля, наводимого статором трехфазного тока 15 и взаимодействующего с полем электромагнита 16, который закреплен на корпусе 13. При продольном перемещении трубы абразивная головка остается на месте, удерживаемая полем статора 15. На рис. 1.13, г представлена схема обработки отверстия брусками 17, закрепленными на постоянных магнитах 18. Бруски размещены в сквозном пазу го­ловки 19 и обращены друг к другу одноименными полюсами. Отталкивание магнитов друг от друга создает нормальные составляющие силы резания.

Схемы магнитно-абразивного полирования группы V включают в себя известные способы абразивной обработки, дополненные наведением в зоне обработки магнитного поля. Так, при шлифовании заготовку 1 можно закреплять между полюсами электромагнита 2 переменного тока. Благодаря снижению предела текучести обрабатываемого материала при доведении его до магнитного насыщения улучшается качество обработки и снижается износ абразивного круга (рис.1.14, а ).

Разместив электромагнит 5 под обрабатываемым листовым материалом 4, при пескоструйной обработке можно получить более равномерное качество поверхности, если использовать ферромагнитный абразивный порошок (рис. 1.14, б). Ферромагнитные частицы, вылетающие из сопла 3 вместе со сжатым воздухом, заряжаются в магнитном поле одноименной полярностью и, отталкиваясь друг от друга, создают поток с более равномерной по сечению плотностью. Следы соударений частиц с обрабатываемой поверхностью имеют одинаковую форму.

Рис. 1.14. Схемы МАП (V группа классификации): а) – обработка заготовки закрепленной между полюсами электромагнита; б) пескоструйная обработка с использованием ферромагнитного абразивного порошка; 1, 4 – заготовка; 2, 5 – электромагнит; 4 – сопло

Рекомендуем почитать

Наверх